2025-05-16 15:45:02 来源:勒克斯教育网
2025年高职单招《数学(中职)》每日一练试题05月16日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过高职单招每日一练的积累,助力我们更容易取得最后的成功。
单选题
1、不等式
的解集为()




答 案:C
解 析:易知x(3x-1)=0的两个根分别为x1=0,
又不等式
的二次项系数大于零,故不等式
的解集为
2、若函数
的图像过定点A(m,n),则m+n=()
答 案:C
解 析:
3、若
则角α的取值集合为()




答 案:C
解 析:



主观题
1、已知
答 案:方法一:矢量图表示法 矢量图表示法如图所示。
方法二:矢量表示法
解 析:


填空题
1、如图,在正方体ABCD-A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,则以下四个结论正确的是().(填写正确结论的编号)① 直线 AM 与CC1是相交直线;②直线 AM 与 BN 是平行直线;③ 直线 BN 与MB1是异面直线;④ 直线 AM 与DD1是异面直线.
答 案:③④
解 析:易知A,M,C1均在平面AD1C1B中,但
所以直线AM与 CC1是异面直线.同理,AM 与 BN是异面直线,BN与 MB1是异面直线,AM 与 DD1是异面直线,故 ①② 错误,③④ 正确.
2、已知0是正方形ABCD的中心,则向量
是().(填序号)
①平行向量;②相等向量;③有相同终点的向量;④模都相等的向量
答 案:④
解 析:根据向量的有关概念及正方形的性质,可得向量
是模都相等的向量
3、若10件产品中有2件次品,现从中任取3件,则至少有一件是次品的取法共有()种。
答 案:64
解 析:从 10件产品中任取3件的取法共有
,其中一件次品都没有的取法共有
,所以至少有一件次品的取法共有120-56=64(种).
简答题
1、已知椭圆C的长轴长为10,两焦点F1,F2的坐标分别为(-3,0)和(3,0)(1)求椭圆的标准方程;
(2)若P为椭圆C上一点,
,求△F1PF2的面积.
答 案:(1)由题意设椭圆C的方程为
,焦距为 2c. 因为椭圆 C的长轴长为10,两焦点F1,F2的坐标分别为(-3,0)和(3,0),
所以2a=10,c=3,
所以a2=25,b2=a2-c2= 16,
所以椭圆C的标准方程为
(2)因为P为椭圆C上一点,且
所以点P的横坐标为3,
代人椭圆方程可得点 P的纵坐标
不妨设点P在x轴上方,则
所以△F1PF2的面积