2025年成考高起点《数学(文史)》每日一练试题10月10日

2025-10-10 12:07:51 来源:勒克斯教育网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2025年成考高起点《数学(文史)》每日一练试题10月10日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、cos+cos(-)+cot+sin+tan=()。

  • A:2
  • B:1
  • C:-2
  • D:-1

答 案:D

2、若|a|=1,|b|=(a-b)⊥a,则a与b的夹角为( )

  • A:30°
  • B:45°
  • C:60°
  • D:75°

答 案:B

解 析:因为(a-b)⊥a, 【考点指要】本题考查向量的模与夹角的计算、向量的数量积的几何意义及对垂直问题的应用

3、image.png

  • A:image.png
  • B:image.png
  • C:image.png
  • D:image.png

答 案:A

解 析:image.png

4、过点A与圆x2+y2=1相切的直线方程是()

  • A:
  • B:
  • C:
  • D:以上都不是

答 案:D

解 析:【考点指要】本题主要考查的内容是利用点到直线的距离公式求直线的斜率,从而写出所求的直线方程,这是考试大纲要求掌握的概念.从近几年的试题分析可知,这类题的深度在今后成人高考中有可能加大,希望考生予以足够的重视.

主观题

1、已知三角形的三边边长组成公差为1的等差数列,且最大角是最小角的二倍,求三边之长。  

答 案:三角形的三边边长分别为4,5,6。

2、设全集U=R,集合A={x|-5<x<5},B={x|0≤x≤7},求CUA∩B.

答 案:解:全集U=R,A={x|-5<x<5},B={X|0≤x≤7},因为CuA={x|x≤-5或x≥5},所以CuA∩B={x|x≤-5或x≥5}N{x|0≤x≤7}={x|5≤x≤7},如图1—10所示。

3、已知函数f(x)=(x-4)(x2-a)。(I)求f’(x);
(Ⅱ)若f’(-1)=8,求f(x)在区间[0,4]的最大值与最小值。

答 案:(I)f'(x) =(x-4)'(x2-a)+(x-4)(x2-a)’ =x2-a+2x(x-4) =3x2-8x-a. (Ⅱ)由于f’(-1)=3+8-a=8,得a=3. 令f'(x)=3x2-8x-3=0,解得x1=3,(舍去)又f(0)=12,f(3)=-6,f(4)=0所以在区间[0,4]上函数最大值为12,最小值为-6

4、已知抛物线C:y2=2px(p>0)的焦点到准线的距离为1。(I)求C的方程;
(Ⅱ)若A(1,m)(m>0)为C上一点,O为坐标原点,求C上另一点B的坐标,使得OA⊥OB。

答 案:(I)由题意,该抛物线的焦点到准线的距离为 所以抛物线C的方程为y2=2x. (Ⅱ)因A(l,m)(m>0)为C上一点,故有m2=2, 可得 m=因此A点坐标为 设B点坐标为

填空题

1、=______。

答 案:27

解 析:

2、函数y=2cosx-cos2x(x∈R)的最大值为______。  

答 案:

解 析:

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2025成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里