2025年成考高起点《数学(文史)》每日一练试题10月23日

2025-10-23 12:18:55 来源:勒克斯教育网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2025年成考高起点《数学(文史)》每日一练试题10月23日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、设集合M={-2,0,2},N={0},则()。  

  • A:N为空集
  • B:N∈M
  • C:
  • D:

答 案:C

解 析:⫋真包含:A真包含于B,则A为B的真子集,例如:若B={1,2},则A={1}或{2}或空集。因此选C。注意:属于(∈)是元素和集合之间的关系,此题是集合与集合之间关系。

2、设甲:x>3,乙:x>5,则()。  

  • A:甲是乙的充分条件,但不是乙的必要条件
  • B:甲是乙的必要条件,但不是乙的充分条件
  • C:甲是乙的充分必要条件
  • D:甲不是乙的充分条件,也不是乙的必要条件

答 案:B

3、已知b1、b2、b3、b4成等差数列,且b1、b4为方程2x2-3x+1=0的两个根,则b2+b3的值为()。  

  • A:1/2
  • B:-3/2
  • C:-1/2
  • D:3/2

答 案:D

4、已知向量i,j为互相垂直的单位向量,向量a=2i+mj,若|a|=2,则m=()

  • A:-2
  • B:-1
  • C:0
  • D:1

答 案:C

解 析:由题可知a=(2,m),因此,故m=0.

主观题

1、已知直线l的斜率为1,l过抛物线C:的焦点,且与C交于A,B两点.
(I)求l与C的准线的交点坐标;
(II)求|AB|.

答 案:(I)C的焦点为,准线为由题意得l的方程为因此l与C的准线的交点坐标为(II)由设A(x1,y1).B(x2,y2),则因此

2、已知函数ƒ(x)=ax3-x2+bx+1(a,b∈R)在区间(-∞,0)和(1,+∞)上都是增函数,在(0,1)内是减函数. (Ⅰ)求a,b的值; (Ⅱ)求曲线y=ƒ(x)在x=3处的切线方程.

答 案:(Ⅰ)因为函数ƒ(x)在(-∞,0)上递增,在(0,1)内递减,在(1,+∞)上有递增,可知函数在x=0和x=1处的导数值均为0. 又f’(x)=3ax2-2x+b, 所以f’(0)=b=0,f’(1)=3a-2+b=0. 即切点为(3.10),所以其切线方程为y-10=12(x-3),即12x-y-26 = 0.  

解 析:【考点指要】本题主要考查函数导数的几何意义、导数的求法和导数的应用——函数的单调区间及曲线的切线方程的求法  

3、设(0<α<π),求tanα的值。  

答 案:

4、已知F是椭圆的右焦点,点M在抛物线y2=2px(p>0)上O为坐标原点,且△MOF为正三角形.  (Ⅰ)求P的值; (Ⅱ)求抛物线的焦点坐标和准线方程.

答 案:(Ⅰ)由椭圆方程可知,椭圆的长半轴a=5,短半轴,则椭圆的半焦距 即椭圆的右焦点F的坐标为 (4.0). 如图,因为△MOF为正三角形,OF=4,过M作MN⊥OF于N点, 【考点指要】本题主要考查椭圆、抛物线的概念,要求考生掌握它们的标准方程和性质,会用它们解决有关的问题.  

填空题

1、在等比数列中,a1=3,an=96,Sn=189,则公比q=______,项数n=_______。  

答 案:q=2,n=6

解 析:解法一:An=A1×q^(n-1)=3q^(n-1)=96q^(n-1)=32S(n-1)=Sn-An=189-96=93
S(n-1)=A1×(1-q^(n-1))/(1-q)
=3(1-32)/(1-q)=93
q=2
2^(n-1)=32
n=6 解法二:  

2、已知10x=3,10y=4,则103(x-y)的值等于______。

答 案:

解 析:由已知,103x=27,103y=64,原式=

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2025成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里