2025年成考高起点《数学(理)》每日一练试题10月09日

2025-10-09 12:14:15 来源:勒克斯教育网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2025年成考高起点《数学(理)》每日一练试题10月09日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、已知3sin2α+8sinα-3=0,则cos2α=()。

  • A:
  • B:
  • C:
  • D:

答 案:A

解 析:由已知得(3sinα-1)(sinα+3)=0。 由于|sinα|≤1,所以sinα=。因此。故选A。

2、设双曲线的渐近线的斜率为k,则|k|=()  

  • A:
  • B:
  • C:
  • D:

答 案:D

解 析:双曲线渐近线的斜率为k故本题中k

3、等差数列{an}前n项和为Sn且S10=100 ,S30=900 ,那么S50的值等于()。

  • A:2400
  • B:2500
  • C:2700
  • D:2800

答 案:B

4、在正方体ABCD-A’B’C’D’中,△A’BC的形状是()。

  • A:等腰三角形
  • B:等边三角形
  • C:直角三角形
  • D:等腰直角三角形

答 案:C

解 析:BC⊥A’B,但BC≠A’C,△A’BC为直角三角形。  

主观题

1、设函数(1)求;(2)求函数f(θ)最小值。

答 案:

2、

答 案:image.png

解 析:image.png

3、求函数上的最大值以及取得这个最大值的x。

答 案:.1 函数取最大值,即y最大值=。

4、某气象预报站天气预报的准确率为80%,计算(1)5次预报中恰有4次准确的概率; (2)5次中至少有次准确的概率.(计算结果保留两个有效数字).  

答 案:  把每次预报看做一次试验,“预报结果准确”看成事件P(A)=0.8,本题就相当于在5次独立重复试验中求A恰好发生4次(或至少4次)的概率,此题属于独立重复试验,由公式来求解。 (1)n=5;p=0.8;k=4 即恰有4次准确的概率为0.41. (2)5次至少有4次准确的概率,就是5次中恰有4次准确的概率与5次预报中都准确的概率的和,即 即至少有4次准确的概率为0.74。  

填空题

1、已知≤0<2π,且实数x满足log3x=2-cos2θ+sin2θ,则x的最小值是______。  

答 案:3

解 析:因为log3x=2-(cos2θ-sin2θ)=2-cos2θ。 又log3x中的底数3>1,因此要使x最小,应使2-cos2θ的值最小,而其最小值为1,故x=3。

2、九个学生期末考试的成绩分别为79 63 88 94 99 77 89 81 85这九个学生成绩的中位数为______。  

答 案:85  

解 析:本题主要考查的知识点为中位数. 将成绩按由小到大排列:63,77,79,81,85,88,89,94,99.因此中位数为85。

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2025成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里