2025年成考专升本《高等数学一》每日一练试题08月22日

2025-08-22 11:29:21 来源:勒克斯教育网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2025年成考专升本《高等数学一》每日一练试题08月22日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考专升本每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、()。  

  • A:-1/2
  • B:0
  • C:1/2
  • D:1

答 案:B

解 析:

2、方程x=z2表示的二次曲面是()。

  • A:球面
  • B:椭圆抛物面
  • C:柱面
  • D:圆锥面

答 案:C

解 析:方程x=z2是以xOy坐标面上的抛物线x=z2为准线,平行于y轴的直线为母线的抛物柱面。

3、在空间直角坐标系中,方程x2+z2=z的图形是()。  

  • A:圆柱面
  • B:圆
  • C:抛物线
  • D:旋转抛物面

答 案:A

解 析:线为圆、母线平行于y轴的圆柱面。

主观题

1、求

答 案:解:

2、求曲线y=x2在点(a,a2)(a<1)的一条切线,使由该切线与x=0、x=1和y=x2所围图形的面积最小。

答 案:解:设所求切线的切点为(a,b),见下图,则b=a2,切线方程为y-b=2a(x-a),y=2ax-2a2+b=2ax-a2。设对应图形面积为A,则
,则,令。当a<时,f'(a)<0;当a>时,f'(a)>0,故为f(a)的最小值点,切线方程为:y=x-

3、求微分方程的通解。

答 案:解:的特征值方程为,则;故齐次微分方程的通解为。由题意设原微分方程的特解为,则有,得。即微分方程的通解为

填空题

1、过坐标原点且与平面2x-y+z+1=0平行的平行方程为()。

答 案:2x-y+z=0

解 析:已知平面的法线向量为(2,-1,1),所求平面与已知平面平行,因此平面方程可设为,又平面过原点,故D=0,即所求平面方程为2x-y+z=0。

2、设y=f(x)可导,点x0=2为f(x)的极小值点,且f(2)=3,则曲线y=f(x)在点(2,3)处的切线方程为()。

答 案:y=3

解 析:由于y=f(x)可导,且点x0=2为f(x)的极小值点,由极值的必要条件可得又f(2)=3,可知曲线过点(2,3)的切线方程为

3、设函数f(x)满足f’(1)=5,则

答 案:10

解 析:

简答题

1、证明:当x>0时>1+x.  

答 案:

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2025成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里