2025年成考高起点《数学(文史)》每日一练试题11月20日

2025-11-20 12:18:29 来源:勒克斯教育网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2025年成考高起点《数学(文史)》每日一练试题11月20日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、若集合M={(x,y)|3x-2y=-1},N={(x,y)|2x+3y=8},则M∩N=()。  

  • A:(1,2)
  • B:{1,2}
  • C:{(1,2)}
  • D:φ

答 案:C

解 析:M,N都是点集,所以只能选C。  

2、与圆x2+y2=4关于点M(3,2)成中心对称的曲线方程是( )  

  • A:
  • B:
  • C:
  • D:

答 案:C

解 析:与圆关于点M成中心对称的曲线还是圆.只要求出圆心和半径,即可求出圆的方程.圆x2+y2=4的圆心(0,0)关于点M(3,2)成中心对称的点为(6,4),所以所求圆的圆心为(6,4),半径与对称圆的半径相等,所以所求圆的方程为(x-6)2+(y-4)2=4. 【考点指要】本题主要考查中心对称图形的定义、中点坐标公式的灵活运用、圆的标准方程的求法,这些主要概念在考试大纲中要求掌握,同时也是近几年经常考到的知识点.

3、由数字1、2、3、4组成没有重复数字的两位数共有()。

  • A:6个
  • B:12个
  • C:8个
  • D:10个

答 案:B

4、直线绕原点按逆时针方向旋转30°后所得直线与圆(x-2)2+y2=3的位置关系是()。

  • A:直线过圆心
  • B:直线与圆相交,但不过圆心
  • C:直线与圆相切
  • D:直线与圆相离

答 案:C

主观题

1、设函数 (1)求;(2)求函数f(θ)最小值。

答 案:

2、教室里有50人在开会,其中学生35人,家长12人,老师3人,现校长在门外听到有人在发言,那么发言人是老师或学生的概率为多少?  

答 案:此题属于互斥事件,发言人是老师的概率为,是学生的概率为,故所求概率为。

3、已知三角形的三边边长组成公差为1的等差数列,且最大角是最小角的二倍,求三边之长。  

答 案:三角形的三边边长分别为4,5,6。

4、设(0<α<π),求tanα的值。  

答 案:

填空题

1、已知tanα=2,则=______。  

答 案:

2、“x2=4”是“x=2”的______。  

答 案:必要不充分条件

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2025成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里