2023-03-24 11:15:56 来源:勒克斯教育网
2023年成考高起点《数学(理)》每日一练试题03月24日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。
单选题
1、设集合M={x||x-2|<1},N={x|x>2},则M∩N=()
答 案:C
解 析:M={x||x-2|<1}解得{x|-1<x-2<1}={x|1<x<3},故M∩N={x|2<x<3}
2、已知直线l:3x-2y-5=0,圆C:
,则C上到l的距离为1的点共有()
答 案:D
解 析:由题可知圆的圆心为(1,-1),半径为2 ,圆心到直线的距离为
,即直线过圆心,因此圆C上到直线的距离为1的点共有4个.
3、(2-3i)2=()
答 案:D
解 析:
4、
的展开式中,x2的系数为()
答 案:C
解 析:二项展开式的第二项为
,故展开式中的x2的系数为5.
主观题
1、已知直线l的斜率为1,l过抛物线C:
的焦点,且与C交于A,B两点.(I)求l与C的准线的交点坐标;
(II)求|AB|.
答 案:(I)C的焦点为
,准线为
由题意得l的方程为
因此l与C的准线的交点坐标为
(II)由
,得
设A(x1,y1),B(x2,y2),则
因此
2、在△ABC中,B=120°,BC=4,△ABC的面积为
,求AC.
答 案:由△ABC的面积为
得
所以AB =4.因此
所以
3、设函数f(x)=xlnx+x.(I)求曲线y=f(x)在点((1,f(1))处的切线方程;
(II)求f(x)的极值.
答 案:(I)f(1)=1,f'(x)=2+lnx,故f'(1)=2.所以曲线y=f(x)在点(1,f(1))处的切线方程为y=2x-1.(II)令f'(x)=0,解得
当
时,f'(x)
单调递减,在区间
单调递增.因此f(x)在
时取得极小值
4、已知a,b,c成等差数列,a,b,c+1成等比数列.若b=6,求a和c.
答 案:由已知得
解得
填空题
1、长方体的长、宽、高分别为2,3,6,则该长方体的对角线长为()
答 案:7
解 析:由题可知长方体的底面的对角线长为
,则在由高、底面对角线、长方体的对角线组成的三角形中,长方体的对角线长为
2、点((4,5)关于直线y=x的对称点的坐标为()
答 案:(5,4)
解 析:点(4,5)关于直线y=x的对称点为(5,4).