2023年成考高起点《数学(理)》每日一练试题03月24日

2023-03-24 11:15:56 来源:勒克斯教育网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2023年成考高起点《数学(理)》每日一练试题03月24日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、设集合M={x||x-2|<1},N={x|x>2},则M∩N=()

  • A:{x|1<x<3}
  • B:{x|x>2}
  • C:{x|2<x<3}
  • D:{x|1<x<2}

答 案:C

解 析:M={x||x-2|<1}解得{x|-1<x-2<1}={x|1<x<3},故M∩N={x|2<x<3}

2、已知直线l:3x-2y-5=0,圆C:,则C上到l的距离为1的点共有()

  • A:1个
  • B:2个
  • C:3个
  • D:4个

答 案:D

解 析:由题可知圆的圆心为(1,-1),半径为2 ,圆心到直线的距离为,即直线过圆心,因此圆C上到直线的距离为1的点共有4个.

3、(2-3i)2=()

  • A:13-6i
  • B:13-12i
  • C:-5-6i
  • D:-5-12i

答 案:D

解 析:

4、的展开式中,x2的系数为()

  • A:20
  • B:10
  • C:5
  • D:1

答 案:C

解 析:二项展开式的第二项为,故展开式中的x2的系数为5.

主观题

1、已知直线l的斜率为1,l过抛物线C:的焦点,且与C交于A,B两点.(I)求l与C的准线的交点坐标;
(II)求|AB|.

答 案:(I)C的焦点为,准线为由题意得l的方程为因此l与C的准线的交点坐标为(II)由,得设A(x1,y1),B(x2,y2),则因此

2、在△ABC中,B=120°,BC=4,△ABC的面积为,求AC.

答 案:由△ABC的面积为所以AB =4.因此所以

3、设函数f(x)=xlnx+x.(I)求曲线y=f(x)在点((1,f(1))处的切线方程;
(II)求f(x)的极值.

答 案:(I)f(1)=1,f'(x)=2+lnx,故f'(1)=2.所以曲线y=f(x)在点(1,f(1))处的切线方程为y=2x-1.(II)令f'(x)=0,解得时,f'(x)时,f'(x)>O.故f(x)在区间单调递减,在区间单调递增.因此f(x)在时取得极小值

4、已知a,b,c成等差数列,a,b,c+1成等比数列.若b=6,求a和c.

答 案:由已知得解得

填空题

1、长方体的长、宽、高分别为2,3,6,则该长方体的对角线长为()

答 案:7

解 析:由题可知长方体的底面的对角线长为,则在由高、底面对角线、长方体的对角线组成的三角形中,长方体的对角线长为

2、点((4,5)关于直线y=x的对称点的坐标为()

答 案:(5,4)

解 析:点(4,5)关于直线y=x的对称点为(5,4).

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2025成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里