2025年成考高起点《数学(理)》每日一练试题12月08日

2025-12-08 12:17:23 来源:勒克斯教育网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2025年成考高起点《数学(理)》每日一练试题12月08日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、已知正三棱柱的底面积等于侧面积等于30,则此正三棱柱的体积为()。

  • A:
  • B:
  • C:
  • D:

答 案:B

解 析:设正三梭柱的底面的边长为a,底面积为 设正三棱柱的高为h,侧面积为3×a×h=3×2×h=30,得h=5.则此正三棱柱的体积为底面积×高=

2、二项式(2x-1)6的展开式中,含x4项系数是()。

  • A:-15
  • B:-240
  • C:15
  • D:240

答 案:D

解 析:

3、已知点在曲线上,那么a的值是()。

  • A:1
  • B:1或-4
  • C:-4或-1
  • D:-4

答 案:B

4、已知3sin2α+8sinα-3=0,则cos2α=()。

  • A:
  • B:
  • C:
  • D:

答 案:A

解 析:由已知得(3sinα-1)(sinα+3)=0。 由于|sinα|≤1,所以sinα=。因此。故选A。

主观题

1、建筑一个容积为8000,深为6m的长方体蓄水池,池壁每的造价为15元,池底每的造价为30元。(I)把总造价y(元)表示为长x(m)的函数;(Ⅱ)求函数的定义域  

答 案:

2、设函数f(x)=xlnx+x.(I)求曲线y=f(x)在点((1,f(1))处的切线方程;
(II)求f(x)的极值.

答 案:(I)f(1)=1,f'(x)=2+lnx,故f'(1)=2.所以曲线y=f(x)在点(1,f(1))处的切线方程为y=2x-1.(II)令f'(x)=0,解得时,f'(x)时,f'(x)>O.故f(x)在区间单调递减,在区间单调递增.因此f(x)在时取得极小值

3、已知关于x的二次方程的两根相等,求sinθ+cosθ的值。

答 案:

4、求(1+tan10°)(1+tan35°)的值。  

答 案:原式=1+tan10°+tan35°+tan10°·tan35°

填空题

1、函数的定义域是()

答 案:

解 析:所以函数的定义域是

2、若P(3,2)是连接P1(2,y)和P2(x,6)线段的中点,则x=______,y=______。  

答 案:x=4,y=-2  

解 析:

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2025成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里