2025-08-12 12:18:14 来源:勒克斯教育网
2025年成考高起点《数学(理)》每日一练试题08月12日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。
单选题
1、
的展开式中,x2的系数为()
答 案:C
解 析:二项展开式的第二项为
,故展开式中的x2的系数为5.
2、若f(x+1)=x2-2x+3,则f(x)=()。
答 案:D
解 析:f(x+1)=x2-2x+3=(x+1)2-4(x+1)+6,∴f(x)=x2-4x+6。(答案为D)
3、某类灯泡使用时数在1000小时以上的概率为0.2,三个灯泡在使用1000小时以后最多只有一个坏的概率为()
答 案:B
解 析:已知灯泡使用1000小时后好的概率为0.2,坏的概率为1-0.2=0.8,则三个灯泡使用1000小时以后,可分别求得: P(没有坏的)
P(一个坏的)
故最多只有一个坏的概率为:0.008+0.096=0.104.
4、下列函数中为奇函数的是()。
答 案:D
解 析:对于D,f(-x)=(-x)3+tan(-x)=-(x3+tanx)=-f(x)。答案为D。
主观题
1、已知A(1,4),B(3,8),C(4,10)。求证A、B、C三点共线。
答 案:
2、已知直线l的斜率为1,l过抛物线C:
的焦点,且与C交于A,B两点.(I)求l与C的准线的交点坐标;
(II)求|AB|.
答 案:(I)C的焦点为
,准线为
由题意得l的方程为
因此l与C的准线的交点坐标为
(II)由
,得
设A(x1,y1),B(x2,y2),则
因此
3、已知空间四边形OABC,OB=OC且∠AOB=∠AOC=θ(如图)
。求证:OA⊥BC。
答 案:
4、求(1+tan10°)(1+tan35°)的值。
答 案:原式=1+tan10°+tan35°+tan10°·tan35°
填空题
1、长方体的长、宽、高分别为2,3,6,则该长方体的对角线长为()
答 案:7
解 析:由题可知长方体的底面的对角线长为
,则在由高、底面对角线、长方体的对角线组成的三角形中,长方体的对角线长为
2、九个学生期末考试的成绩分别为79 63 88 94 99 77 89 81 85这九个学生成绩的中位数为______。
答 案:85
解 析:本题主要考查的知识点为中位数. 将成绩按由小到大排列:63,77,79,81,85,88,89,94,99.因此中位数为85。