2025-10-03 12:11:49 来源:勒克斯教育网
2025年成考高起点《数学(文史)》每日一练试题10月03日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。
单选题
1、若a,b,c分别表示△ABC的顶点A,B,C所对的边长,且(a+b+c)(a+b-c)=3ab,cos(A+B)=()。




答 案:A
2、从15名学生中选出两人担任正、副班长,不同的选举结果共有()
答 案:C
解 析:由已知条件可知本题属于排列问题,
3、掷两颗骰子点数之和等于4的概率是()。




答 案:B
解 析:掷一对骰子的等可能结果共有n=36种,点数之和等于4的结果有1+3=4,3+1=4,2+2=4,故有m=3种,所以其概率为
故选B。
4、从15名学生中选出两人担任正副组长,不同的选举结果共有()。
答 案:C
主观题
1、
答 案:
解 析:
2、求证:双曲线的一个焦点到一条渐近线的距离等于虚半轴的长.
答 案:设双曲线的方程为
则它的焦点坐标为F1(-c,0),F2(c,0),其中c2=a2+b2,渐近线方程为
令设焦点F2(c,0)到渐近线
的距离为d,则
即从双曲线
的一个焦点F2(c,0)到一条渐近线
的距离等于虚半
轴的长b,由上述推导过程可知,点F2到渐近线
以及点F1(-c,0)到渐近线
的距离都等。
由于证明中只涉及a,b,c,而与双曲线的位置无关,所以这个结论对于任意双曲线都成立.
解 析:本题考查的是圆锥曲线与直线位置关系的推理能力,主要是用代数的方法表示几何中的问题.考生必须对曲线方程、几何性质及元素之间的关系有深刻的理解,方可解决此类综合题.这种综合性的圆锥曲线试题出现的概率比较高,要引起重视.
3、弹簧的身长与下面所挂砝码的重量成正比,知弹簧挂20g重的砝码时长度是12cm,挂35g重的砝码时长度是15cm,写出弹簧长度y(cm)与砝码重x(g)的函数关系式,并求弹簧不挂砝码时的长度
答 案:设弹簧原长为y0cm,则弹簧伸长量为(y-y0)cm,
由题意得y-y0=kx,即y=kx+y0,
由已知条件得
解得k=0.2,y0=8.
所求函数关系式为y=0.2x+8,弹的原长为8CM
4、已知抛物线C:y2=2px(p>0)的焦点到准线的距离为1。(I)求C的方程;
(Ⅱ)若A(1,m)(m>0)为C上一点,O为坐标原点,求C上另一点B的坐标,使得OA⊥OB。
答 案:(I)由题意,该抛物线的焦点到准线的距离为
所以抛物线C的方程为y2=2x.
(Ⅱ)因A(l,m)(m>0)为C上一点,故有m2=2,
可得 m=
因此A点坐标为
设B点坐标为


填空题
1、直线
的倾斜角的度数为()
答 案:60°
解 析:由题意知直线的斜率为
设直线的倾斜角为α,则tanα=
由0°≤α≤180°,故α=60°
2、在等比数列中,a1=3,an=96,Sn=189,则公比q=______,项数n=_______。
答 案:q=2,n=6
解 析:解法一:An=A1×q^(n-1)=3q^(n-1)=96q^(n-1)=32S(n-1)=Sn-An=189-96=93
S(n-1)=A1×(1-q^(n-1))/(1-q)
=3(1-32)/(1-q)=93
q=2
2^(n-1)=32
n=6
解法二:
2025年成考高起点《数学(文史)》每日一练试题03月10日 03-10 2023年成考高起点《数学(文史)》每日一练试题03月10日 03-10 2022年成考高起点《数学(文史)》每日一练试题10月03日 10-03 2024年成考高起点《数学(文史)》每日一练试题10月03日 10-03 2024年成考高起点《数学(文史)》每日一练试题03月10日 03-10 2023年成考高起点《数学(文史)》每日一练试题10月03日 10-03 2025年成考高起点《数学(文史)》每日一练试题03月03日 03-03 2025年成考高起点《数学(文史)》每日一练试题10月10日 10-10