2025年成考高起点《数学(文史)》每日一练试题09月21日

2025-09-21 12:06:52 来源:勒克斯教育网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2025年成考高起点《数学(文史)》每日一练试题09月21日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、样本数据10,16,20,30的平均数为

  • A:19
  • B:20
  • C:21
  • D:22

答 案:A

解 析:本题主要考查的知识点为平均数 image.png

2、设集合M={x|x<-3},N={x|x>1},则M∩N=()。  

  • A:R
  • B:(-∞,-3)∪(1,+∞)
  • C:(-3,1)
  • D:

答 案:D

3、已知函数f(x)=cos,则下列等式中对于任意x都成立的是()。

  • A:f(x+2π)=f(x)
  • B:f(π-x)=f(x)
  • C:f(-x)=f(x)
  • D:f(-x)=-f(x)

答 案:C

4、设()。

  • A:2a2+1
  • B:2a2-1
  • C:2a-1
  • D:2a+1

答 案:D

解 析:本题主要考查的知识点为对数函数的性质。

主观题

1、已知am=,an=,求a3n-4m的值。  

答 案:

2、已知F是椭圆的右焦点,点M在抛物线y2=2px(p>0)上O为坐标原点,且△MOF为正三角形.  (Ⅰ)求P的值; (Ⅱ)求抛物线的焦点坐标和准线方程.

答 案:(Ⅰ)由椭圆方程可知,椭圆的长半轴a=5,短半轴,则椭圆的半焦距 即椭圆的右焦点F的坐标为 (4.0). 如图,因为△MOF为正三角形,OF=4,过M作MN⊥OF于N点, 【考点指要】本题主要考查椭圆、抛物线的概念,要求考生掌握它们的标准方程和性质,会用它们解决有关的问题.  

3、求下列函数的最大值、最小值和最小正周期: (1) 2)y=6cosx+8sinx

答 案: 所以函数的最大值是最小值是最小正周期为2π, (2)要将6cosx+8sinx化为sinαcosx+cosαsinx这种形式,需使cosx与sinx的系数平方和为1,为此,将已知函数化为 因此,函数的最大值是10,最小值是-10,最小正周期为2π

4、在△ABC中,已知三边 a、b、c 成等差数列,且最大角∠A是最小角的2倍, a: b :c.  

答 案:

填空题

1、在∆ABC中,已知cosA=,cosB=,那么cosC=______。

答 案:

2、甲、乙、丙三位教师担任6个班的课,如果每人任选两个班上课有______种不同的任课方法。  

答 案:90

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2025成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里