2025年成考高起点《数学(理)》每日一练试题08月20日

2025-08-20 12:06:20 来源:勒克斯教育网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2025年成考高起点《数学(理)》每日一练试题08月20日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、i为虚数单位,则复数的虚部为()。

  • A:
  • B:
  • C:
  • D:

答 案:D

解 析:

2、下列四个命题中正确的是()。 ①已知a,b,c三条直线,其中a,b异面,a//c,则b,c异面。
②若a与b异面,b与c异面,则a与c异面。
③过平面外一点与平面内一点的直线,和平面内不经过该点的直线是异面直线。
④不同在任何一个平面内的两条直线叫异面直线。

  • A:③④
  • B:②③④
  • C:①②③④
  • D:①②

答 案:A

解 析:①b与c可相交,②a与c可以有平行、相交、异面三种位置关系。答案为A。  

3、若()

  • A:
  • B:
  • C:
  • D:

答 案:B

解 析:首先做出单位圆,然后根据问题的约束条件,利用三角函数线找出满足条件的a角取值范围  

4、以抛物线y2=8x的焦点为圆心,且与此抛物线的准线相切的圆的方程是()。

  • A:(x+2)2+y2=16
  • B:(x+2)2+y2=4
  • C:(x-2)2+y2=16
  • D:(x-2)2+y2=4

答 案:C

解 析:抛物线y2=8x的焦点,即圆心为(2,0),抛物线的准线方程是x=-2,与此抛物线的准线相切的圆的半径是r=4,与此抛物线的准线相切的圆的方程是(x-2)2+y2=16。答案为C。

主观题

1、

答 案:

2、已知空间四边形OABC,OB=OC且∠AOB=∠AOC=θ(如图)。求证:OA⊥BC。

答 案:

3、试证明下列各题
(1)
(2)

答 案:(1)化正切为正、余弦,通分即可得证。 (2)

4、设函数(1)求;(2)求函数f(θ)最小值。

答 案:

填空题

1、的展开式是()

答 案:

解 析:

2、已知,则=______。  

答 案:

解 析:

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2025成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里