2025-04-02 12:15:39 来源:勒克斯教育网
2025年成考高起点《数学(理)》每日一练试题04月02日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。
单选题
1、中心在坐标原点,对称轴为坐标轴,且一个顶点(3,0),虚轴长为8的双曲线方程是()




答 案:B
解 析:双曲线有一个顶点为(3,0),因此所求双曲线的实轴在x轴上,可排除A、C选项,又由于虚轴长为8,故b=4,即b2=16,故双曲线方程为
2、函数
的定义域为()。
答 案:A
解 析:本题主要考查的知识点为函数的定义域.
对于
,奇次根号下无要求,故函数的定义域为R
3、
=()。
答 案:B
解 析:由于
。log22=-8。故选B。
4、
展开式中,末3项的系数(a,x 均未知) 之和为()
答 案:C
解 析:

末三项数之和为

主观题
1、已知直线l的斜率为1,l过抛物线C:
的焦点,且与C交于A,B两点.(I)求l与C的准线的交点坐标;
(II)求|AB|.
答 案:(I)C的焦点为
,准线为
由题意得l的方程为
因此l与C的准线的交点坐标为
(II)由
,得
设A(x1,y1),B(x2,y2),则
因此
2、设函数f(x)=xlnx+x.(I)求曲线y=f(x)在点((1,f(1))处的切线方程;
(II)求f(x)的极值.
答 案:(I)f(1)=1,f'(x)=2+lnx,故f'(1)=2.所以曲线y=f(x)在点(1,f(1))处的切线方程为y=2x-1.(II)令f'(x)=0,解得
当
时,f'(x)
单调递减,在区间
单调递增.因此f(x)在
时取得极小值
3、cos20°cos40°cos80°的值。
答 案:
4、已知函数f(x)=(x-4)(x2-a) (I)求f"(x); (Ⅱ)若f"(-1)=8,求f(x)在区间[0,4]的最大值与最小值
答 案:

填空题
1、lgsinθ=a,lgcosθ=b,则sin2θ=______。
答 案:2×10a+b
解 析:
sin2θ=2sinθcosθ=2×10a×10b=2×10a+b
2、ABCD是正方形,E是AB的中点,如将△DAE和△CBE分别沿虚线DE、CE折起,使AE与BE重合如图
,设A与B重合后的点为P,则面PCD与面ECD所成的二面角为______度,PE与面ECD成______度。
答 案:二面角为30°,PE与面ECS成60角°
解 析:(1)求面PCD与面ECD所成的二面角为多少度,就是要求出由平面PCD与平面ECD所组成的二面角的平面角,其中画出二面角的平面角是关键,因为二面角确定以后,二面角的平面角很容易画出(由二面角的平面角的定义)。求角度时,常用到勾股定理、正弦定理、余弦定理、兰垂线定理和逆定理。 (2)求PE与面ECD成多少度,就是求直线与平面所成的角是多少度。首先要找出平面的一条斜线(直线PE)和斜线的射影,斜线和射影所成的锐角,就是直线PE和平面ECD所成的角,再求出角度。 设CD的中点为F,练PF,EF
∵PC=PD,EC=ED.
∴PF⊥CD,EF⊥CD(三垂线定理)
∠PFE是二面角P-CD-E的平面角
∵PE⊥PC,PE⊥CD.
∴PE⊥平面PCD,又PF在平面PCD内
∴PE⊥PF
设正方形边长为1(如图)
故面PCD与面ECD所成的二面角为30°,PE与面ECS成60角°。