2025年高职单招每日一练《生物》7月13日

考试总分:10分

考试类型:模拟试题

作答时间:60分钟

已答人数:977

试卷答案:有

试卷介绍: 2025年高职单招每日一练《生物》7月13日专为备考2025年生物考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。

开始答题

试卷预览

  • 1. 下列元素中,构成有机物基本骨架的是( )

    A

    B

    C

    D

  • 2. 碘是合成甲状腺激素的重要原料。甲状腺滤泡细胞内碘浓度比血液中高20~25倍,则其吸收碘的运输方式属于()  

    A自由扩散

    B协助扩散

    C主动运输

    D胞吞

  • 1. 结合本文信息分析,以下过程合理的是()。  

    A大肠杆菌通过ABC外向转运蛋白分泌蛋白质

    B植物细胞通过ABC内向转运蛋白吸收

    C动物细胞通过ABC内向转运蛋白吸收氨基酸

    D动物细胞通过ABC外向转运蛋白排出Cl-

  • 2. 以下属于脐带血中有功能造血干细胞的特点的是()(填字母)。  

    A表现出较强的细胞分裂能力

    B细胞呼吸相关酶的含量增加

    C细胞抗自由基氧化能力增强

    D增加单位脐带血中造血干细胞的数量

  • 1. 番茄是我国重要的蔬菜作物之一,其果实颜色非常丰富。果实颜色取决于果皮和果肉颜色,研究人员对其遗传进行了一系列研究。 (1)果皮黄色与果皮透明色的番茄杂交,F1自交,F2中果皮黄色番茄177株,透明色番茄62株,说明果皮颜色由()对等位基因控制,且控制()性状的基因为显性。 (2)继续对果肉颜色的遗传进行研究。 ①番茄成熟会经历绿熟期(没有着色)、转色期(顶部着色程度达到)和红熟期(完全着色),实验时应选择()期调查果肉颜色。 ②已有研究表明:番茄果肉颜色与基因T/t和R/r相关(如图1所示),基因型TTRR的番茄果肉表型为()。基因型为TTrr的番茄胡萝卜素减少,但未合成番茄红素,造成果肉为黄色。 ③叶绿素含量也会对果肉颜色造成影响,G基因控制高含量叶绿素,紫色番茄中叶绿素和番茄红素含量均较高。为研究G基因所在的位置,用果肉颜色为紫色的纯种番茄与②中的黄色番茄杂交,F1果肉为粉红色,F1自交,F2果肉粉红色:黄色:紫色:绿色=9:3:3:1,推测G位于T/t所在位置(如图2所示),且G对T为()(填“显性”或“隐性”)。若F₁与亲本黄色番茄杂交,子代的性状分离比为(),可以进一步验证上述推测。  
  • 2. 如图为细胞分裂某一时期的示意图。请据图回答下列问题: (1)此细胞处于()期,此时有四分体()个。 (2)减数分裂过程中,可以和“1”染色体自由组合的是()(填数字)染色体。 (3)此细胞分裂后产生的2个子细胞中,每个子细胞含有同源染色体()对。子细胞染色体的组合为()。 (4)染色体主要是由()和()组成的。用光学显微镜观察细胞中的染色体,需先用()染色。  
  • 1. 研究人员用野生一粒小麦与山羊草杂交可获得二粒小麦,过程如图所示。 请回答问题: (1)野生一粒小麦与山羊草()(填“是”或“不是”)同一物种,判断依据是() (2)培育二粒小麦的过程中,秋水仙素抑制了细胞分裂过程中()的形成,最终使得二粒小麦的体细胞中染色体的数目变为条。 (3)培育出的二粒小麦是()(填“可育”或“不可育”)的。
  • 2. 辣椒具有重要的经济价值,果实颜色丰富多彩。科研人员用红色野生型线辣椒与黄色突变体进行果实颜色遗传规律的研究,杂交过程及结果如图所示。请回答问题: (1)据结果推断,线辣椒果实颜色的遗传符合基因的()定律,其中()色为显性性状。 (2)将F1与亲本中()的(填“红色”或“黄色”)线辣椒杂交,若后代出现()的性状分离比,说明F1是杂合子。 (3)在F2的红色线辣椒中,杂合子的比例为() (4)细胞代谢过程容易产生自由基,会()细胞内执行正常功能的生物分子。研究证实辣椒果实中的色素对这些生物分子具有保护作用。
  • 1. 阅读科普短文,请回答问题。 当iPSC"遇到"CRISPR/Cas9 诱导多能干细胞(iPSC)技术和基因编辑技术(如CRISPR/Cas9)在当今生命科学研究中发挥着极其重要的作用,相关科学家分别于2012年和2020年获得诺贝尔奖,都具有里程碑式的意义。当iPSC“遇到”CRISPR/Cas9能创造出什么样的奇迹呢? 1958年,科学家利用胡萝卜的韧皮部细胞培养出胡萝卜植株,此项工作完美地诠释了“高度分化的植物细胞依然具有发育成完整个体或分化成其他各种细胞的潜能和特性”。然而,对于高度分化的动物细胞而言,类似过程却不那么容易。 2006年,科学家将细胞干性基因转入小鼠体细胞,诱导其成为多能干细胞,即iPSC。该技术突破了高度分化的动物细胞难以实现重新分裂、分化的瓶颈,为进一步定向诱导奠定了基础,也为那些依赖于胚胎干细胞而进行的疾病治疗提供了新的选择。但是,这种技术需通过病毒介导,且转入的细胞干性基因可能使iPS细胞癌变。 直到2012年,研究人员发现一种源自细菌的CRISPR/Cas9系统可作为基因编辑的工具,能对基因进行定向改造。例如,研究者将β-珠蛋白生成障碍性贫血病小鼠的体细胞诱导成iPS细胞,再利用CRISPR/Cas9对该细胞的β-珠蛋白基因进行矫正,并诱导该细胞分化为造血干细胞,然后再移植到β-珠蛋白生成障碍性贫血小鼠体内,发现该小鼠能够正常表达β-珠蛋白。 两大技术的“联手”,将在疾病治疗方面有更广阔的应用前景。 (1)由于细胞干性基因的转入,使体细胞恢复了()的能力,成为iPS细胞,进而可以定向诱导成多种体细胞。诱导成的多种体细胞具有()(填“相同”或“不同”)的遗传信息。 (2)iPS细胞诱导产生的造血干细胞向红细胞分化过程中,β-珠蛋白基因可以通过()和()过程形成β-珠蛋白。 (3)结合文中信息,概述iPSC和CRISPR/Cas9技术“联手”用于疾病治疗的优势:()
  • 2. 学习下列材料,请回答(1)~(4)题。 基于细菌构建拟真核细胞 人工构建细胞的传统手段是将纯化后的酶、基因等加入囊泡或微滴。筛选得到的人工细胞具有基因表达、酶催化等功能,但结构较简单,且功能单一。科研人员打破传统手段,以原核细胞为基础材料构建出拟真核细胞,其构建过程分两步。 第一步:构建原细胞。将大肠杆菌和铜绿假单胞菌置于空液滴中,大肠杆菌会自发地进入液滴内部,铜绿假单胞菌在液滴表面。利用酶将两种细菌裂解后,铜绿假单胞菌的质膜留在液滴表面,液滴内部有主要来自大肠杆菌和部分来自假单胞菌的蛋白质、核酸等成分。这些成分具有基本的酶催化、糖酵解和基因表达功能。由此构建出一个由质膜包裹的、内含细胞质活性成分的原细胞。 第二步:构建拟真核细胞。在原细胞中加入组蛋白等大分子,在其内部得到DNA/组蛋白体,构建一个拟细胞核结构。随后在细胞质植入活的大肠杆菌,产生内源性ATP。再加入肌动蛋白单体构建拟细胞骨架的结构,大大增强了细胞的稳定性。随着时间的推移,内部代谢物质逐渐积累,球状原细胞在48小时后呈现如图所示的不规则形状,且保持了细胞结构的复杂性,质膜也不断修复。最终获得了一个结构和功能复杂的拟真核细胞。 (1)从文中信息可知,原细胞的质膜来源于(),质膜可将其与外界环境分隔开,从而保证了内部环境的() (2)推测文中“在细胞质植入活的大肠杆菌,产生内源性ATP”这一过程相当于在原细胞 中植入了()(填细胞器名称),()了原细胞已有的功能。 (3)与真核细胞相比,拟真核细胞还未具有()等结构。 (4)从细胞起源和进化的角度分析,这一研究可以为()提供证据。