2025-07-24 17:31:17 来源:勒克斯教育网
2025年高职单招《生物》每日一练试题07月24日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过高职单招每日一练的积累,助力我们更容易取得最后的成功。
单选题
1、纸层析法可分离光合色素,下列分离装置示意图中正确的是()




答 案:C
2、基因突变、基因重组和染色体结构变异的共同点是()
答 案:C
解 析:本题主要考查生物变异的类型及特征。变异有不可遗传变异和可遗传变异两种类型,环境因素引起的是不可遗传变异,由遗传物质改变引起的是可遗传变异,可遗传的变异包括基因突变、染色体变异和基因重组。基因突变包括碱基对的增添、缺失或替换,本质是基因结构的改变,能够产生新的基因:基因重组的方式有同源染色体上非姐妹染色单体之间的交叉互换和非同源染色体上非等位基因之间的自由组合,会产生新的基因型;染色体变异包括染色体结构和数目的改变。故选C。
多选题
1、以下属于脐带血中有功能造血干细胞的特点的是()(填字母)。
答 案:ABC
解 析:本题主要考查获取信息的能力。结合文中信息可知A、B、C均正确,NOV发挥作用后,造血干细胞总量几乎不变,D错误。
2、下列选项中,能体现基因剂量补偿效应的有()(多选)。
答 案:AC
主观题
1、有迁移能力的动物细胞边缘常见不规则突出物,曾被认为是细胞膜碎片。近年来,我国科研人员在电镜下发现这些突出物具有石榴状结构(PLS),如图1所示。
请回答问题:
(1)若PLS是细胞膜碎片,则其主要成分应包括()和蛋白质。细胞膜上的蛋白质具有()等功能。
(2)科研人员分析了PLS中蛋白质的来源及其功能,结果如图2所示,发现与“PLS是细胞膜碎片”的观点不符,理由是:该结构中的蛋白质()。
(3)科研人员将细胞中只参与PLS形成的特定蛋白质用荧光蛋白标记,追踪在细胞迁移过程中PLS的变化,进行了如下实验。
①分别用细胞迁移促进剂和抑制剂处理可迁移细胞,实验结果如图3所示,推测PLS的形成与细胞迁移有关,依据是()。
②细胞沿迁移路径形成的PLS,其荧光在形成初期逐渐增强,推测迁移细胞可主动将细胞中的蛋白质运输到()中。
③迁移细胞在某处产生PLS,后续细胞经过此处时,若观察到(),则说明PLS被后续细胞摄取。进入后续细胞的PLS最可能在()(细胞器)中被分解。
(4)具有迁移能力的细胞可普遍形成PLS,后续细胞摄取PLS后,可获知细胞的迁移路线等信息。综上分析,PLS的形成可能与细胞间的()有关。
答 案:(1)磷脂;物质运输、信息交流 (2)不仅来自细胞膜,还来自细胞质和其他部位,也不只具有细胞膜蛋白质的功能 (3)①促进细胞迁移,PLS增多(抑制细胞迁移,PLS减少) ②PLS ③荧光标记出现在后续细胞中溶酶体 (4)信息交流(通讯)
解 析:(1)如果PLS是细胞膜碎片,它的主要成分是磷脂和蛋白质。细胞膜上的蛋白质具有物质运输、识别、信息交流等功能。 (2)从图2中可以看出,PLS中的蛋白质不仅来自细胞膜,还来自细胞质和其他部位,这与“PLS是细胞膜碎片”的观点不符。 (3)①用细胞迁移促进剂处理细胞后,PLS的荧光强度更强,而用抑制剂处理细胞后,PLS的荧光强度减弱,这说明PLS的形成与细胞迁有关。 ②细胞沿迁移路径形成的PLS,其荧光在形成初期逐渐增强,这表明迁移细胞可以主动将细胞中的蛋白质运输到PLS中。 ③如果迁移细胞在某处产生PLS,后续细胞经过此处时,观察到PLS的荧光强度减弱或消失,则说明PLS被后续细胞摄取。进入后续细胞的PLS最可能在溶酶体中被分解。 (4)具有迁移能力的细胞普遍形成PLS,后续细胞摄取PLS后可以获得迁移路线等信息。综上分析,PLS的形成可能与细胞间的信息交流有关。
2、酸菜是利用乳酸菌发酵得到的一种传统食品。自然发酵条件下,杂菌较多,酸菜品质变动较大。为了提高酸菜的品质及稳定性,研究者在自然发酵条件下添加一定量的干酪乳酸菌进行酸菜发酵(即人工发酵),并将这两种发酵方法进行比较。请回答问题:
(1)酸菜发酵过程中,需保持()(填“有氧”或“无氧”)条件,白菜中的糖类物质在乳酸菌所产酶的作用下,可被分解为()和[H],再转化为乳酸。
(2)酸度和亚硝酸盐含量是评价酸菜品质的重要指标。研究者检测两种发酵方法的pH和亚硝酸盐含量,结果如图1和图2所示。
①据图1可知,发酵初期,人工发酵的pH比自然发酵的下降更(),原因是()。
②某些杂菌会产生亚硝酸盐。综合图1、图2分析,人工发酵中亚硝酸盐含量未出现明显峰值,其主要原因是发酵初期形成的()环境抑制了杂菌生长。
③食品安全标准规定,酱腌菜中亚硝酸盐含量不超过20mg/kg。据此,食用自然发酵酸菜的安全时间为()天及之后,而人工发酵酸菜不受发酵天数限制。
(3)除酸度、亚硝酸盐含量外,评价酸菜品质的指标还有()。
答 案:(1)无氧;丙酮酸 (2)①快;人工发酵添加的干酪乳酸菌快速繁殖,产生了大量乳酸 ②酸性 ③9 (3)颜色、味道、气味、脆度、营养价值等(合理即可)
填空题
1、图1为细胞合成与分泌淀粉酶的过程示意图,图2为细胞膜结构示意图,图中序号表示细胞结构或物质。
(1)淀粉酶的化学本质是(),控制该酶合成的遗传物质存在于[4]()中。
(2)图1中,淀粉酶先在核糖体合成,再经[2]()运输到[1]()加工,最后由小泡运到细胞膜外,整个过程均需[3]()提供能量。
(3)图2中,与细胞相互识别有关的是图中的[5](),帮助某些离子进入细胞的是()(填图中序号)。
答 案:(1)蛋白质 细胞核 (2)内质网 高尔基体 线粒体 (3)糖蛋白 6
2、酸菜是利用乳酸菌发酵得到的一种传统食品。自然发酵条件下,杂菌较多,酸菜品质变动较大。为提高酸菜品质及稳定性,研究者在自然发酵条件下添加一定量的干酪乳酸菌进行酸菜发酵(即人工发酵),并将这两种发酵方法进行比较。请回答问题:
(1)酸菜发酵过程中,需保持()(填“有氧”或“无氧”)条件,白菜中的糖类物质在乳酸菌所产酶的作用下,可被分解为和()[H],再转化为乳酸。
(2)酸度和亚硝酸盐含量是评价酸菜品质的重要指标。研究者检测两种发酵方法的pH和亚硝酸盐含量,结果如图1和图2所示。
①据图1可知,发酵初期,人工发酵的pH比自然发酵的下降更(),原因是()
②某些杂菌会产生亚硝酸盐。综合图1、图2分析,人工发酵中亚硝酸盐含量未出现明显峰值,其主要原因是发酵初期形成的()环境抑制了杂菌生长。
③食品安全标准规定,酱腌菜中亚硝酸盐含量不超过20mg/kg。据此,食用自然发酵酸菜的安全时间为()天及之后,而人工发酵酸菜不受发酵天数限制。
(3)除酸度、亚硝酸盐含量外,评价酸菜品质的指标还有()
答 案:(1)无氧 丙酮酸(2)①快 人工发酵添加的干酪乳酸菌快速繁 殖,产生了大量乳酸 ②酸性 ③9(3)颜色、味道、气味、脆度、营养价值等(合理即可)
简答题
1、请阅读下面的科普短文,并回答问题: 20世纪60年代,有人提出:在生命起源之初,地球上可能存在一个RNA世界。在原始生命中,RNA既承担着遗传信息载体的功能,又具有催化化学反应的作用。 现有很多证据支持“RNA世界论”的观点。例如,RNA能自我复制,满足遗传物质传递遗传信息的要求;RNA既可作为核糖体结构的重要组成部分,又能在遗传信息的表达过程中作为DNA与蛋白质之间的信息纽带;科学家在原生动物四膜虫等生物中发现了核酶(具有催化活性的RNA)后,又陆续发现在蛋白质合成过程和mRNA的加工过程中均有核酶参与。 蛋白质有更复杂的氨基酸序列,更多样的空间结构,催化特定的底物发生化学反应,而RNA在催化反应的多样性及效率上均不如蛋白质。所以,RNA的催化功能逐渐被蛋白质代替。 RNA结构不稳定,容易受到环境影响而发生突变。RNA还能发生自身催化的水解反应,不易产生更长的多核苷酸链,携带的遗传信息量有限。所以,RNA作为遗传物质的功能逐渐被DNA代替。现今的绝大多数生物均以DNA为遗传物质,还有一个重要原因是DNA不含碱基U。研究发现,碱基C容易自发脱氨基而转变为U,若DNA含碱基U,与DNA复制相关的“修复系统”就无法区分并切除突变而来的U,导致DNA携带遗传信息的准确性降低。 地球生命共同传承着几十亿年来原始RNA演绎的生命之树,生命演化之初的RNA世界已转变为当今由RNA、DNA和蛋白质共同组成的生命世界。 (1)核酶的化学本质是() (2)RNA病毒的遗传信息蕴藏在()的排列顺序中。 (3)在“RNA世界”以后的亿万年进化过程中,RNA作为()的功能分别被蛋白质和DNA代替。 (4)在进化过程中,绝大多数生物以DNA作为遗传物质的原因是:与RNA相比,DNA分子() a.结构简单b.碱基种类多c.结构相对稳定d.复制的准确性高 (5)有人认为“生命都是一家”。结合上文,你是否认同这一说法,请说明理由:()
答 案:(1)RNA (2)碱基(核糖核苷酸) (3)酶和遗传物质 (4)cd (5)不认同;有的生物以DNA作为遗传物质,有的生物以RNA作为遗传物质认同;所有生物均以核酸作为遗传物质
2、学习下列材料,回答(1)~(3)题。
mRNA技术带来新一轮疗法革命
蛋白替代疗法一般用于治疗与特定蛋白质功能丧失相关的单基因疾病。由于酶缺失或缺陷引起的疾病可以用外源供应的酶进行治疗。例如,分别使用凝血因子VⅢ、凝血因子IX治疗A型、B型血友病。然而,一些蛋白质的体外合成非常困难,限制了这种疗法在临床上的应用。基于mRNA技术的疗法,是将体外获得的mRNA递送到人体的特定细胞中,让其合成原本缺乏的蛋白质,从而达到预防或治疗疾病的目的。
把mRNA从细胞外递送进细胞内,需借助递送系统。递送系统能保护mRNA分子,使其在血液中不被降解。纳米脂质体是目前已实现临床应用的递送系统,可以保证mRNA顺利接触靶细胞,再通过胞吞作用进入细胞。
研发mRNA药物遇到一个难题:外源mRNA进入细胞后会引发机体免疫反应,出现严重的炎症。科学家卡塔琳·考里科和德鲁·韦斯曼成功对mRNA进行化学修饰,将组成mRNA的尿苷替换为假尿苷(如图甲所示),修饰过的mRNA进入细胞后能有效躲避免疫系统的识别,大大降低了炎症反应,蛋白合成量显著增加。两位科学家因此获得2023年诺贝尔生理学或医学奖。
理论上,蛋白质均能以mRNA为模板合成。因此有人认为mRNA是解锁各类疾病的“万能钥匙”,可以探索利用mRNA技术治疗蛋白质异常的疾病,达到精准治疗的目的。
(1)推测用于递送mRNA的纳米脂质体中的“脂质”主要指()
(2)尿苷由一分子尿嘧啶和一分子核糖组成,一分子尿苷再与一分子()组合,构成尿嘧啶核糖核苷酸。将mRNA的尿苷替换为假尿苷,其碱基排列顺序()(填“改变”或“未改变”)。mRNA进入细胞质后,会指导合成具有一定()顺序的蛋白质。
(3)文中提到,mRNA是解锁各类疾病的“万能钥匙”。图乙为用mRNA技术治疗疾病的思路,请补充I、Ⅱ处相应的内容。I.();Ⅱ().
答 案:(1)磷脂 (2)磷酸 未改变 氨基酸 (3)基因 mRNA