2025年成考高起点《数学(文史)》每日一练试题12月15日

2025-12-15 12:22:20 来源:勒克斯教育网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2025年成考高起点《数学(文史)》每日一练试题12月15日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、设集合S={(x,y)|xy>0},T={(x,y)|x>0,且y>0},则

  • A:S∪T=S
  • B:S∪T=T
  • C:S∩T=S
  • D:S∩T=∅

答 案:A

解 析:由已知条件可知集合S表示的是第第一,三象限的点集,集合T表示的是第一象限内点的集合,所以所以有S∪T=S,S∩T=T,所以选择A。

2、函数的图像与直线y=4的交点坐标为()

  • A:(0,4)
  • B:(4,64)
  • C:(1,4)
  • D:(4,16)

答 案:C

解 析:令y=4x=4,解得x=1,故所求交点为(1,4).

3、设集合M={-2,0,2},N={0},则()。  

  • A:N为空集
  • B:N∈M
  • C:
  • D:

答 案:C

解 析:⫋真包含:A真包含于B,则A为B的真子集,例如:若B={1,2},则A={1}或{2}或空集。因此选C。注意:属于(∈)是元素和集合之间的关系,此题是集合与集合之间关系。

4、函数的最小正周期和最大值分别为

  • A:
  • B:
  • C:
  • D:

答 案:B

解 析: 【考点指要】本题考查的是三角函数y=Asin(ωx+φ)+B的周期性和最值问题,需要注意的是正弦函数y=sinx和余弦函数y=cosx的最小正周期为2π,正切函数y=tanx的最小正周期为x.

主观题

1、设3a=5b=15,求a-1+b-1的值。  

答 案:由3a=15,得a=log315;又由5b=15,得b=log515。 因此a-1+b-1= =log153+log155=1。

解 析:过程中应用了换底公式的推论,即

2、已知直线l的斜率为1,l过抛物线C:的焦点,且与C交于A,B两点.
(I)求l与C的准线的交点坐标;
(II)求|AB|.

答 案:(I)C的焦点为,准线为由题意得l的方程为因此l与C的准线的交点坐标为(II)由设A(x1,y1).B(x2,y2),则因此

3、已知函数ƒ(x)=ax3-x2+bx+1(a,b∈R)在区间(-∞,0)和(1,+∞)上都是增函数,在(0,1)内是减函数. (Ⅰ)求a,b的值; (Ⅱ)求曲线y=ƒ(x)在x=3处的切线方程.

答 案:(Ⅰ)因为函数ƒ(x)在(-∞,0)上递增,在(0,1)内递减,在(1,+∞)上有递增,可知函数在x=0和x=1处的导数值均为0. 又f’(x)=3ax2-2x+b, 所以f’(0)=b=0,f’(1)=3a-2+b=0. 即切点为(3.10),所以其切线方程为y-10=12(x-3),即12x-y-26 = 0.  

解 析:【考点指要】本题主要考查函数导数的几何意义、导数的求法和导数的应用——函数的单调区间及曲线的切线方程的求法  

4、已知x+x-1=,求x2+x-2的值。  

答 案:由已知,得

填空题

1、已知向量a=(3,2),b=(-4,x),且a⊥b,则x=()  

答 案:6

解 析:∵a⊥b, ∴3×(-4)+2x=0 ∴x=6.  

2、为了考察某种小麦的长势,从中抽取10株苗,测得苗高如下(单位:cm):12,13,14,15,10,16,13,11,15,11. 则该品种的小麦苗高的样本方差为__________cm2.

答 案:3.6

解 析:由题中条件可得 【考点指要】本题主要考查样本的平均值和方差的计算,考生只需熟记样本平均数和方差的公式即可.

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2025成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里