2025年成考高起点《数学(文史)》每日一练试题11月07日

2025-11-07 12:20:47 来源:勒克斯教育网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2025年成考高起点《数学(文史)》每日一练试题11月07日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、若|a|=|b|=1,且a⊥b,又2a+3b与λa-4b互相垂直,则λ为()

  • A:6
  • B:-6
  • C:3
  • D:-3

答 案:A

2、已知b1、b2、b3、b4成等差数列,且b1、b4为方程2x2-3x+1=0的两个根,则b2+b3的值为()。  

  • A:1/2
  • B:-3/2
  • C:-1/2
  • D:3/2

答 案:D

3、某车间有甲、乙两台机床,已知甲机床停机的概率为0.06,乙机床停机的概率为0.07,甲、乙两车床同时停机的概率是()。

  • A:0.13
  • B:0.0042
  • C:0.03
  • D:0.04

答 案:B

4、设函数f(x十1)=2x+2,则f(x)=()

  • A:2x-1
  • B:2x
  • C:2x+1
  • D:2x+2

答 案:B

解 析:f(x十1)=2x+2=2(x+1),令t=x+1,故f(t)=2t,把t换成x,因此f(x)=2x.

主观题

1、已知tan2θ=2tan2ψ+1,求cos2θ+sin2ψ的值。  

答 案:由已知,得

2、已知am=,an=,求a3n-4m的值。  

答 案:

3、设函数f(x)且f'(-1)=-36 (Ⅰ)求m (Ⅱ)求f(x)的单调区间

答 案:(Ⅰ)由已知得f'= 又由f'(-1)=-36得 6-6m-36=-36 故m=1. (Ⅱ)由(Ⅰ)得f'(x)= 令f'(x)=0,解得 当x<-3时,f'(x)>0; 当-32时,f'(x)>0; 故f(x)的单调递减区间为(-3,2),f(x)的单调递增区间为(-∞,-3),(2,+∞)  

4、(1)已知tanα= 求cot2α的值; (2)已知tan2α=1,求tanα的值。

答 案:(1) (2)由已知,得 解关于tanα的一元二次方程,得tanα=

填空题

1、在1000000张奖券中,设有1个一等奖,5个二等奖,10个三等奖,从中买一张奖券,中奖的概率是______。  

答 案:

解 析:本题试验属于等可能事件的概率。n=1000000,m=16,所以买一张奖券,中奖的概率

2、设直线y=2x+m与抛物线y2=4x没有公共点,则m的取值范围是______。  

答 案:

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2025成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里