2025年成考高起点《数学(文史)》每日一练试题11月01日

2025-11-01 12:13:34 来源:勒克斯教育网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2025年成考高起点《数学(文史)》每日一练试题11月01日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、cos+cos(-)+cot+sin+tan=()。

  • A:2
  • B:1
  • C:-2
  • D:-1

答 案:D

2、与圆x2+y2=4关于点M(3,2)成中心对称的曲线方程是()

  • A:(x-3)2+(y-2)2=0
  • B:(x+3)2+(y+2)2=0
  • C:(x-6)2+(y-4)2=0
  • D:(x+6)2+(y+4)2=0

答 案:C

解 析:与圆关于点M成中心对称的曲线还是圆.只要求出圆心和半径,即可求出圆的方程.圆X2+y2=4的圆心(0,0)关于点M(3,2)成中心对称的点为(6,4),所以所求圆的圆心为(6,4),半径与对称圆的半径相等,所以所求圆的方程为(x-6)2+(y-4)2=4。  

3、不等式|2x-3|≤1的解集为()

  • A:{x|1≤x≤2}
  • B:{x|x≤-1或x≥2}
  • C:{x|1≤x≤3}
  • D:{x|2≤x≤3}

答 案:A

解 析:故原不等式的解集为{x|1≤x≤2}

4、sin=()=()。

  • A:
  • B:
  • C:
  • D:

答 案:C

主观题

1、求证:双曲线的一个焦点到一条渐近线的距离等于虚半轴的长.  

答 案:设双曲线的方程为 则它的焦点坐标为F1(-c,0),F2(c,0),其中c2=a2+b2,渐近线方程为 令设焦点F2(c,0)到渐近线 的距离为d,则 即从双曲线的一个焦点F2(c,0)到一条渐近线的距离等于虚半 轴的长b,由上述推导过程可知,点F2到渐近线以及点F1(-c,0)到渐近线 的距离都等。 由于证明中只涉及a,b,c,而与双曲线的位置无关,所以这个结论对于任意双曲线都成立.

解 析:本题考查的是圆锥曲线与直线位置关系的推理能力,主要是用代数的方法表示几何中的问题.考生必须对曲线方程、几何性质及元素之间的关系有深刻的理解,方可解决此类综合题.这种综合性的圆锥曲线试题出现的概率比较高,要引起重视.

2、

答 案:image.png

解 析:image.png

3、已知三角形的三边边长组成公差为1的等差数列,且最大角是最小角的二倍,求三边之长。  

答 案:三角形的三边边长分别为4,5,6。

4、设椭圆的中心是坐标原点,长袖在x轴上,离心率,已知点P(0,3/2)到椭圆上的点的最远距离是,求椭圆的方程。

答 案:

填空题

1、5个同学站成一排,其中某个人恰好站在排头的概率是______。  

答 案:

解 析:基本事件的总数n=5!,其中某人恰好站在排头的排法有m=4!种,所求概率为。  

2、函数y=2cosx-cos2x(x∈R)的最大值为______。  

答 案:

解 析:

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2025成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里