2025年成考高起点《数学(理)》每日一练试题10月08日

2025-10-08 12:18:18 来源:勒克斯教育网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2025年成考高起点《数学(理)》每日一练试题10月08日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、两条直线是异面直线的充分条件是这两条直线()。

  • A:分别在两个平面内
  • B:是分别在两个相交平面内的不相交的直线
  • C:是分别在两个相交平面内的不平行的直线
  • D:分别在两个相交平面内,其中一条与这两个平面的交线相交于一点,而另一条不过这个点

答 案:D

2、下列各式中正确是()。

  • A:
  • B:
  • C:
  • D:

答 案:D

解 析: 上为减函数,故

3、函数f(x)=x3-6x2+9x-3的单调区间为()。

  • A:(-∞,-3)、(-3,1)、(1,+∞)
  • B:(-∞,-1)、(-1,3)、(3,+∞)
  • C:(-∞,1)、(1,3)、(3,+∞)
  • D:(-∞,-3)、(-3,-1)、(-1,+∞)

答 案:C

解 析:y=x3-6x2+9x-3则y’=3x2+12x+9 令y’=0,x2-4x+3=0(x-1)(x-3)=0解得,x1=1,x2=3 四个答案中,只有C具有1、3两个极值点,其余3个没有,故应选C。  

4、下列关系式中,对任意实数A<B<0都成立的是()。

  • A:a2<b2
  • B:lg(b-a)>0
  • C:2a<2b
  • D:lg(-a)<lg(-b)

答 案:C

主观题

1、设函数f(x)= (Ⅰ)求f(x)的单调区间; (Ⅱ)求 f(x)的极值

答 案:(Ⅰ)函数的定义域为 (Ⅱ)  

2、已知数列{an}中,a1=2, (Ⅰ)求数列{an}的通项公式; (Ⅱ)求数列{an}前5项的和 S5

答 案:解:

3、已知函数f(x)=(x-4)(x2-a) (I)求f"(x); (Ⅱ)若f"(-1)=8,求f(x)在区间[0,4]的最大值与最小值

答 案:

4、求将抛物线y=x2-2x-3平移到顶点与坐标原点重合时的函数解析式。  

答 案:

填空题

1、lgsinθ=a,lgcosθ=b,则sin2θ=______。  

答 案:2×10a+b

解 析: sin2θ=2sinθcosθ=2×10a×10b=2×10a+b  

2、椭圆的中心在原点,一个顶点和一个焦点分别是直线x+3y-6与两坐标轴的交点,则此椭圆的标准方程为()  

答 案:

解 析:原直线方程可化为交点(6,0),(0,2). 当点(6,0)是椭圆一个焦点,点(0,2) 是椭圆一个顶点时,c=6,b=2,当点(0,2) 是椭圆一个焦点,(6,0) 是椭圆一个顶点时,c=2,b-6,

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2025成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里