2025年成考高起点《数学(理)》每日一练试题07月19日

2025-07-19 12:01:19 来源:勒克斯教育网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2025年成考高起点《数学(理)》每日一练试题07月19日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、函数的值域是()。

  • A:(0,+∞)
  • B:(-∞,+∞)
  • C:(1,+∞)
  • D:[1,+∞)

答 案:C

解 析:

2、设,则 ()。

  • A:sina+cosa
  • B:—sing—cosa
  • C:sing—coso
  • D:cosa—sina

答 案:D

解 析:本题主要考查的知识点为三角函数的运算.当时,

3、从点M(x,3)向圆作切线,切线的最小值等于()  

  • A:4
  • B:
  • C:5
  • D:

答 案:B

解 析:如图,相切是直线与圆的位置关系中的一种,此题利用圆心坐标、半径,求出切线长. 由圆的方程知,圆心为B(-2,-2),半径为1,设切点为A, 由勾股定理得, 当x+2=0时,MA取最小值,最小值为  

4、在△ABC中,∠C=90°,∠B=30°,D是BC上的一点,∠ADB=135°,AC=2,则BD等于()。  

  • A:
  • B:
  • C:
  • D:

答 案:B

解 析:由已知得,AC=CD=2,设BD=x,在Rt△ABC中,BC=2cot30°=  

主观题

1、已知A(1,4),B(3,8),C(4,10)。求证A、B、C三点共线。  

答 案:

2、为了测河的宽,在岸边选定两点A和B,望对岸标记物C,测得AB=120m,求河的宽

答 案:如图, ∵∠C=180°-30°-75°=75° ∴△ABC为等腰三角形,则AC=AB=120m 过C做CD⊥AB,则由Rt△ACD可求得CD==60m, 即河宽为60m  

3、已知x+x-1=,求x2+x-2的值。

答 案:由已知,得

4、在△ABC中如果sinA=2sinBcosC,求证:△ABC是等腰三角形。  

答 案:∴△ABC为等腰三角形。

填空题

1、椭圆的中心在原点,一个顶点和一个焦点分别是直线x+3y-6与两坐标轴的交点,则此椭圆的标准方程为()  

答 案:

解 析:原直线方程可化为交点(6,0),(0,2). 当点(6,0)是椭圆一个焦点,点(0,2) 是椭圆一个顶点时,c=6,b=2,当点(0,2) 是椭圆一个焦点,(6,0) 是椭圆一个顶点时,c=2,b-6,

2、已知A(0,1),B(1,2),存在一点P是,则点P的坐标是______。

答 案:

解 析:

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2025成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里