2025年成考高起点《数学(理)》每日一练试题03月19日

2025-03-19 12:20:31 来源:勒克斯教育网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2025年成考高起点《数学(理)》每日一练试题03月19日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、下列函数中为奇函数的是()。

  • A:y=2lgx
  • B:y=3x+3-x
  • C:y=x3+sin2x
  • D:y=x3+tanx

答 案:D

解 析:对于D,f(-x)=(-x)3+tan(-x)=-(x3+tanx)=-f(x)。答案为D。  

2、抛物线 y=ax2的准线方程是 y=2,则a=()。

  • A:
  • B:
  • C:8
  • D:-8

答 案:B

解 析:

3、下列函数中,为偶函数的是()。

  • A:
  • B:
  • C:
  • D:

答 案:C

解 析:根据函数的奇偶性的定义可知为偶函数

4、二次函数y=2x2+mx-5在区间(-∞,-1)内是减函数,在区间(-1,+∞)内是增函数,则m的值是()。

  • A:4
  • B:-4
  • C:2
  • D:-2

答 案:A

解 析:由题意可知二次函数y=2x2+mx-5的对称轴方程为x=-1,又解得m=4

主观题

1、 展开式的二项式系数之和比展开式的二项式系数之和小240。 求:(1)展开式的第3项;
(2)展开式的中间项。

答 案:

2、cos20°cos40°cos80°的值。

答 案:

3、设(0<α<π),求tanα的值。

答 案:

4、在△ABC中如果sinA=2sinBcosC,求证:△ABC是等腰三角形。  

答 案:∴△ABC为等腰三角形。

填空题

1、已知sin2θ+1=cos2θ,则的值等于______。  

答 案:

解 析:由已知,cos2θ-sin2θ=1,即cos2θ-(1-cos2θ)=1,cos2θ=1,所以cosθ=±1。 而当cosθ=±1时,sinθ=0。  

2、100件产品中有3件次品,每次抽取一件,有放回的抽取三次,恰有1件是次品的概率是______。  

答 案:0.0847

解 析:由于三次抽取是独立的,每次抽取可看做是一次试验,每次试验只有两个可能结果:“正品”或“次品”,次品率为,因此二次独立且重复试验恰有1件次品率为  

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2025成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里