课程
题库
分享到空间
分享到新浪微博
分享到QQ
分享到微信
2024年成考高起点《数学(文史)》每日一练试题02月17日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。
单选题
1、在△ABC中,三边为a、b、c,∠B=60°,则
的值是()
答 案:C
解 析:由已知用余弦定理得:
2、函数y=x2+1(x>0)的图像在()
答 案:A
解 析:当x>0时,函数y=x2+1>0,因此函数的图像在第一象限.
3、下列函数中,为奇函数的是()
- A:y=cos2x
- B:y=sinx
- C:y=2-x
- D:y=x+1
答 案:B
解 析:当f(-x)=-f(x)时,函数f(x)是奇函数,四个选项中只有选项B符合,故选B选项.
4、函数y=2sinxcosx的最小正周期是()
答 案:D
解 析:y=2sinxcosx=sin2x,故其最小正周期
主观题
1、设函数
(I)求f'(2);
(II)求f(x)在区间[一1,2]的最大值与最小值.
答 案:(I)因为
,所以f'(2)=3×22-4=8.(II)因为x<-1,f(-1)=3.
f(2)=0.
所以f(x)在区间[一1,2]的最大值为3,最小值为
2、设椭圆的中心是坐标原点,长轴在x轴上,离心率
已知点P
到圆上的点的最远距离是
求椭圆的方程
答 案:由题意,设椭圆方程为
由
设P
点到椭圆上任一点的距离为 d,
则在y=-b时,
最大,即d也最大。

3、如图:已知在△ADC中,∠C=90°,∠D=30°,∠ABC=45°,BD=20,求AC(用小数表示,保留一位小数)
答 案:如图
4、已知直线l的斜率为1,l过抛物线C:
的焦点,且与C交于A,B两点.
(I)求l与C的准线的交点坐标;
(II)求|AB|.
答 案:(I)C的焦点为
,准线为
由题意得l的方程为
因此l与C的准线的交点坐标为
(II)由
得
设A(x1,y1).B(x2,y2),则
因此
填空题
1、函数
的图像与坐轴的交点共有()个
答 案:2
解 析:当x=0,
故函数与y轴交于(0,-1)点;令y=0,则有
故函数与工轴交于(1,0)点,因此函数
与坐标轴的交点共有2个
2、
()
答 案:3
解 析:
温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!