2025年成考高起点《数学(文史)》每日一练试题12月14日

2025-12-14 12:07:07 来源:勒克斯教育网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2025年成考高起点《数学(文史)》每日一练试题12月14日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、函数的定义域为()。

  • A:(-∞,-4)∪(4,+∞)
  • B:(-∞,-2)∪(2,+∞)
  • C:[-2,2]
  • D:(-2,2)

答 案:D

2、已知sinx,则x所在象限是()  

  • A:第一象限
  • B:第二象限
  • C:第三象限
  • D:第四象限

答 案:C

解 析:=sinx|sinx|+cosx|cosx|,当sinx、cosx均为负时,有 故x在第三象限  

3、一批产品共有5件,其中4件为正品,1件为次品,从中一次取出2件均为正品的概率为()。

  • A:0.6
  • B:0.5
  • C:0.4
  • D:0.3

答 案:A

解 析:本题主要考查的知识点为随机事件的概率。 一次取出2件均为正品的概率为

4、已知向量a=(3,4),b=(0,-2),则cos=()  

  • A:
  • B:
  • C:
  • D:

答 案:B

解 析:因为a=(3,4),b=(0,-2),  

主观题

1、已知F是椭圆的右焦点,点M在抛物线y2=2px(p>0)上O为坐标原点,且△MOF为正三角形.  (Ⅰ)求P的值; (Ⅱ)求抛物线的焦点坐标和准线方程.

答 案:(Ⅰ)由椭圆方程可知,椭圆的长半轴a=5,短半轴,则椭圆的半焦距 即椭圆的右焦点F的坐标为 (4.0). 如图,因为△MOF为正三角形,OF=4,过M作MN⊥OF于N点, 【考点指要】本题主要考查椭圆、抛物线的概念,要求考生掌握它们的标准方程和性质,会用它们解决有关的问题.  

2、已知直线l的斜率为1,l过抛物线C:的焦点,且与C交于A,B两点.
(I)求l与C的准线的交点坐标;
(II)求|AB|.

答 案:(I)C的焦点为,准线为由题意得l的方程为因此l与C的准线的交点坐标为(II)由设A(x1,y1).B(x2,y2),则因此

3、已知log53=a,log54=b,求log2512关于a,b的表达式。  

答 案:

4、设函数
(I)求f'(2);
(II)求f(x)在区间[一1,2]的最大值与最小值.

答 案:(I)因为,所以f'(2)=3×22-4=8.(II)因为x<-1,f(-1)=3.f(2)=0.
所以f(x)在区间[一1,2]的最大值为3,最小值为

填空题

1、设

答 案:-1

解 析:  

2、平面内有10个点,任何三点都不在同一直线上,问能连成______条不同的直线。  

答 案:45

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2025成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里