2025年成考高起点《数学(文史)》每日一练试题07月28日

2025-07-28 11:56:06 来源:勒克斯教育网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2025年成考高起点《数学(文史)》每日一练试题07月28日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、下列函数在定义域内,既是奇函数又是增函数的是()。

  • A:y=sinx
  • B:y=log2x 
  • C:y=x+8
  • D:y=x3 

答 案:D

2、已知向量a=(3,1),b=(-2,5),则3a-2b=()。

  • A:(2,7)
  • B:(13,-7)
  • C:(2,-7)
  • D:(13,,13)

答 案:B

解 析:根据a=(3,1),b=(-2,5),则3a-2b=3×(3,1)-2×(-2,5)=(13,-7)  

3、过点A与圆x2+y2=1相切的直线方程是()

  • A:
  • B:
  • C:
  • D:以上都不是

答 案:D

解 析:【考点指要】本题主要考查的内容是利用点到直线的距离公式求直线的斜率,从而写出所求的直线方程,这是考试大纲要求掌握的概念.从近几年的试题分析可知,这类题的深度在今后成人高考中有可能加大,希望考生予以足够的重视.

4、在自然数1、2、…、100中任取一个数能被3整除的概率是()。

  • A:
  • B:
  • C:
  • D:

答 案:C

解 析:此题属于等可能事件的概率,n=100,m=33,其概率为,故应选C。  

主观题

1、若tanα、tanβ是关于x的方程mx2-(2m-3)x+m-2=0的两个实根,求tan(α+β)的取值范围

答 案: 由(1)(2)得,tan(a+β)=m-3/2;由(3)得m≤9/4且m≠0所以tan(a+β)的取值范围是(-∞,-3/2)U(-3/2,3/4)  

2、求(1+tan10°)(1+tan35°)的值。

答 案:原式=1+tan10°+tan35°+tan10°·tan35°

3、在△ABC中,已知证明a,b,c成等差数列。

答 案: 考点 本题主要考查三角函数的恒等变换以及积化和差公式的应用,积化和差有一定难度,请考生注意.

4、已知三角形的三边边长组成公差为1的等差数列,且最大角是最小角的二倍,求三边之长。  

答 案:三角形的三边边长分别为4,5,6。

填空题

1、一个问题在1小时内,甲能独立解决的概率是0.5,乙能独立解决的概率是0.4,两人在1小时内解决问题的概率是______。

答 案:0.7  

2、log2[log2(log381)]=______。  

答 案:1

解 析:由于log381=log334=4,于是 原式=log2(log24)=log22=1。  

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2025成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里