2025年高职单招每日一练《数学》11月24日

考试总分:10分

考试类型:模拟试题

作答时间:60分钟

已答人数:1708

试卷答案:有

试卷介绍: 2025年高职单招每日一练《数学》11月24日专为备考2025年数学考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。

开始答题

试卷预览

  • 1. 已知圆C的圆心坐标为(1,2),半径r=3,则圆C的标准方程为(x-1)2+(y-2)2=9。()  

    A

    B

  • 2. 记等差数列{an}的前n项和为Sn,若首项a1=1/2,公差d=3,则S4=20。()  

    A

    B

  • 1. 各棱长均为a的三棱锥的表面积为()  

    A

    B

    C

    D

  • 2. 某产品分甲、乙、丙三级,其中乙、丙两级均属次品,若生产中出现乙级品的概率为0.03、丙级品的概率为0.01,则对成品抽查—件抽得正品的概率为()  

    A0.09

    B0.98

    C0.97

    D0.96

  • 1. 下列计算结果正确的是()  

    A

    B

    C

    D

  • 2. 为了评估某种治疗肺炎药物的疗效,现有关部门对该药物在人体 血管中的药物浓度进行测量.设该药物在人体血管中药物浓度c 与时间t 的关系为c = f (t) ,甲、乙两人服用该药物后,血管中药物浓度随时间t 变化的关系如下图所示. 给出下列四个结论正确的是( )  

    A在 t1时刻,甲、乙两人血管中的药物浓度相同;

    B在 t2时刻,甲、乙两人血管中药物浓度的瞬时变化率相同;

    C在[t2, t3] 这个时间段内,甲、乙两人血管中药物浓度的平均变化率相同;

    D在[t1 , t2] , [t2, t3] 两个时间段内,甲血管中药物浓度的平均变化率不相同.

  • 1. 已知函数f(x)=(ax+b)lnx. (1)当a=1,b=0时,求函数y=f(x)的极值; (2)当a=1,b=1时,求不等式f(x)≥2x-2的解集; (3)当a=1,b=1时,若当x∈(1,+∞),恒有f(x)>λ(x-1)成立,求实数λ的取值范围.
  • 2. 设函数f(x)=xekx,x∈R,(k≠0),试讨论函数的单调性.
  • 1. 在等比数列中,若a3,a9是方程的两根,则a6=()  
  • 2. 化简:=________