2025年高职单招每日一练《生物》7月18日

考试总分:10分

考试类型:模拟试题

作答时间:60分钟

已答人数:1461

试卷答案:有

试卷介绍: 2025年高职单招每日一练《生物》7月18日专为备考2025年生物考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。

开始答题

试卷预览

  • 1. 甲型流感病毒(IAV)是单链RNA病毒,进入人体细胞后遗传信息的传递过程如图所示。下列叙述正确的是()  

    AIAV的基因是有遗传效应的DNA片段

    BIAV的增殖过程中会发生A-T碱基配对

    C催化①②过程的酶可作为药物研发靶点

    D在核糖体上进行的③过程不发生碱基配对

  • 2. 下图是三个相邻植物细胞之间水分流动方向示意图。图中三个细胞的细胞液浓度关系是()  

    A甲>乙>丙

    B甲<乙<丙

    C甲>乙,乙<丙

    D甲<乙,乙>丙

  • 1. 结合本文信息分析,以下过程合理的是()。  

    A大肠杆菌通过ABC外向转运蛋白分泌蛋白质

    B植物细胞通过ABC内向转运蛋白吸收

    C动物细胞通过ABC内向转运蛋白吸收氨基酸

    D动物细胞通过ABC外向转运蛋白排出Cl-

  • 2. 以下属于脐带血中有功能造血干细胞的特点的是()(填字母)。  

    A表现出较强的细胞分裂能力

    B细胞呼吸相关酶的含量增加

    C细胞抗自由基氧化能力增强

    D增加单位脐带血中造血干细胞的数量

  • 1. 近年来,对番茄果色的研究开始受到重视。研究者以某纯系红果番茄和绿果番茄为亲本进行杂交实验,过程如图所示。 请回答下列问题: (1)F2中出现不同相对性状的现象叫作()。统计F2中红果、棕果、黄果、绿果的数量,比例接近9:3:3:1,推测本实验所研究的果色性状由()对等位基因控制,符合基因的()定律。 (2)若要验证上述推测,可将F1与绿果番茄杂交,此杂交方式称为(),预期后代的性状及比例为()。在F2的红果番茄中,杂合子所占的比例应为()。  
  • 2. 硒是人和动物必需的微量元素,在自然界中常以有毒性的亚硒酸盐()等形式存在,某些微生物能将还原为低毒性的单质硒。 (1)由于细胞膜在功能上具有()性,无法自由通过,需要借助膜上的()进出细胞。 (2)科研人员选用细菌H作为实验材料对硒的跨膜运输进行研究,实验设计及结果见下表。比较Ⅲ组和I组,推测主要以()方式进入细菌H。I和IV组结果表明()。 (3)为验证水通道蛋白A在细菌H吸收过程中的功能,科学家对A基因进行改造,得到如图所示结果,推测A蛋白在细菌H吸收中起着关键作用。作出此推测的依据是:()。  
  • 1. 高盐环境下粮食作物会大量减产。为研究植物的耐盐机理,科研人员将耐盐植物滨藜和不耐盐植物柑橘分别置于不同浓度NaCl溶液中培养,一段时间后测定并计算生长率,结果如图1。 (1)据图1分析,与植物A相比,植物B耐盐范围(),可推知植物B是滨藜。 (2)植物处于高盐环境中,细胞外高浓度的Na+通过图2中的通道蛋白以()的方式进入细胞,导致细胞质中Na+浓度升高。 (3)随着外界NaCl浓度的升高,植物A逐渐出现萎蔫现象,这是由于外界NaCl浓度 ()细胞液浓度,细胞失水。细胞中Na+和Cl-的浓度进一步升高,蛋白质逐渐变性,酶活性降低,细胞代谢(),因此在高盐环境中植物A生长率低。 (4)据图2分析,植物B处于高盐环境中,细胞内Ca2+浓度升高,促使Na+进入();同时激活(),将Na+排出细胞,从而使细胞质中Na+的浓度恢复正常水平,缓解蛋白质变性。
  • 2. 高盐环境下粮食作物会大幅减产。为研究植物的耐盐机理,科研人员将耐盐植物滨藜和不耐盐植物柑橘分别置于不同浓度NaCl溶液中培养,一段时间后测定并计算生长率,结果如图1。请回答问题: (1)据图1分析,与植物A相比,植物B耐盐范围(),可推知植物B是滨藜。 (2)植物处于高盐环境中,细胞外高浓度的Na+通过图2中的通道蛋白以()的方式进入细胞,导致细胞质中Na+浓度升高。 (3)随着外界NaCl浓度的升高,植物A逐渐出现萎蔫现象,这是由于外界NaCl浓度()细胞液浓度,细胞失水。细胞中Na+和Cl-的浓度进一步升高,蛋白质逐渐变性,酶活性降低,细胞代谢(),因此在高盐环境中植物A生长率低。 (4)据图2分析,植物B处于高盐环境中,细胞内Ca2+浓度升高,促使Na+进入();同时激活(),将Na+排出细胞,从而使细胞质中Na+的浓度恢复正常水平,缓解蛋白质变性。
  • 1. 请阅读下面的科普短文,并回答问题: 20世纪60年代,有人提出:在生命起源之初,地球上可能存在一个RNA世界。在原始生命中,RNA既承担着遗传信息载体的功能,又具有催化化学反应的作用。 现有很多证据支持“RNA世界论”的观点。例如,RNA能自我复制,满足遗传物质传递遗传信息的要求;RNA既可作为核糖体结构的重要组成部分,又能在遗传信息的表达过程中作为DNA与蛋白质之间的信息纽带;科学家在原生动物四膜虫等生物中发现了核酶(具有催化活性的RNA)后,又陆续发现在蛋白质合成过程和mRNA的加工过程中均有核酶参与。 蛋白质有更复杂的氨基酸序列,更多样的空间结构,催化特定的底物发生化学反应,而RNA在催化反应的多样性及效率上均不如蛋白质。所以,RNA的催化功能逐渐被蛋白质代替。 RNA结构不稳定,容易受到环境影响而发生突变。RNA还能发生自身催化的水解反应,不易产生更长的多核苷酸链,携带的遗传信息量有限。所以,RNA作为遗传物质的功能逐渐被DNA代替。现今的绝大多数生物均以DNA为遗传物质,还有一个重要原因是DNA不含碱基U。研究发现,碱基C容易自发脱氨基而转变为U,若DNA含碱基U,与DNA复制相关的“修复系统”就无法区分并切除突变而来的U,导致DNA携带遗传信息的准确性降低。 地球生命共同传承着几十亿年来原始RNA演绎的生命之树,生命演化之初的RNA世界已转变为当今由RNA、DNA和蛋白质共同组成的生命世界。 (1)核酶的化学本质是() (2)RNA病毒的遗传信息蕴藏在()的排列顺序中。 (3)在“RNA世界”以后的亿万年进化过程中,RNA作为()的功能分别被蛋白质和DNA代替。 (4)在进化过程中,绝大多数生物以DNA作为遗传物质的原因是:与RNA相比,DNA分子() a.结构简单b.碱基种类多c.结构相对稳定d.复制的准确性高 (5)有人认为“生命都是一家”。结合上文,你是否认同这一说法,请说明理由:()
  • 2. 学习下列材料,回答(1)~(3)题。 mRNA技术带来新一轮疗法革命 蛋白替代疗法一般用于治疗与特定蛋白质功能丧失相关的单基因疾病。由于酶缺失或缺陷引起的疾病可以用外源供应的酶进行治疗。例如,分别使用凝血因子VⅢ、凝血因子IX治疗A型、B型血友病。然而,一些蛋白质的体外合成非常困难,限制了这种疗法在临床上的应用。基于mRNA技术的疗法,是将体外获得的mRNA递送到人体的特定细胞中,让其合成原本缺乏的蛋白质,从而达到预防或治疗疾病的目的。 把mRNA从细胞外递送进细胞内,需借助递送系统。递送系统能保护mRNA分子,使其在血液中不被降解。纳米脂质体是目前已实现临床应用的递送系统,可以保证mRNA顺利接触靶细胞,再通过胞吞作用进入细胞。 研发mRNA药物遇到一个难题:外源mRNA进入细胞后会引发机体免疫反应,出现严重的炎症。科学家卡塔琳·考里科和德鲁·韦斯曼成功对mRNA进行化学修饰,将组成mRNA的尿苷替换为假尿苷(如图甲所示),修饰过的mRNA进入细胞后能有效躲避免疫系统的识别,大大降低了炎症反应,蛋白合成量显著增加。两位科学家因此获得2023年诺贝尔生理学或医学奖。 理论上,蛋白质均能以mRNA为模板合成。因此有人认为mRNA是解锁各类疾病的“万能钥匙”,可以探索利用mRNA技术治疗蛋白质异常的疾病,达到精准治疗的目的。 (1)推测用于递送mRNA的纳米脂质体中的“脂质”主要指() (2)尿苷由一分子尿嘧啶和一分子核糖组成,一分子尿苷再与一分子()组合,构成尿嘧啶核糖核苷酸。将mRNA的尿苷替换为假尿苷,其碱基排列顺序()(填“改变”或“未改变”)。mRNA进入细胞质后,会指导合成具有一定()顺序的蛋白质。 (3)文中提到,mRNA是解锁各类疾病的“万能钥匙”。图乙为用mRNA技术治疗疾病的思路,请补充I、Ⅱ处相应的内容。I.();Ⅱ().