2023-08-10 12:07:22 来源:勒克斯教育网
2023年成考高起点《数学(理)》每日一练试题08月10日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。
单选题
1、方程
的图像是下图中的()




答 案:D
解 析:本题属于读图题型,在寻求答案时,要着重讨论方程的表达式
2、已知复数z=a+bi,其中a,
且b≠0,则()




答 案:C
解 析:注意区分
3、已知α∩β=a,b⊥β,b在α内的射影是b’,那么b'和α的关系是()
答 案:B
解 析:
∴由三垂线定理的逆定理知,b在α内的射影b'⊥α,故选B
4、某类灯泡使用时数在1000小时以上的概率为0.2,三个灯泡在使用1000小时以后最多只有一个坏的概率为()
答 案:B
解 析:已知灯泡使用1000小时后好的概率为0.2,坏的概率为1-0.2=0.8,则三个灯泡使用1000小时以后,可分别求得: P(没有坏的)
P(一个坏的)
故最多只有一个坏的概率为:0.008+0.096=0.104.
主观题
1、在正四棱柱ABCD-A'B'C'D'中,
(Ⅰ)写出向量
关于基底{a,b,c}的分解式
(Ⅱ)求证:
(Ⅲ)求证:
答 案:(Ⅰ)由题意知(如图所示)

(Ⅱ)
(Ⅲ)
由已知,a,c是正四棱柱的棱,a,b,c两两垂直
2、设函数f(x)=xlnx+x.(I)求曲线y=f(x)在点((1,f(1))处的切线方程;
(II)求f(x)的极值.
答 案:(I)f(1)=1,f'(x)=2+lnx,故f'(1)=2.所以曲线y=f(x)在点(1,f(1))处的切线方程为y=2x-1.(II)令f'(x)=0,解得
当
时,f'(x)
单调递减,在区间
单调递增.因此f(x)在
时取得极小值
3、为了测河的宽,在岸边选定两点A和B,望对岸标记物C,测得
AB=120m,求河的宽

答 案:如图,
∵∠C=180°-30°-75°=75°
∴△ABC为等腰三角形,则AC=AB=120m
过C做CD⊥AB,则由Rt△ACD可求得CD=
=60m,
即河宽为60m
4、已知数列
的前n项和
求证:
是等差数列,并求公差和首项。
答 案:
填空题
1、设离散型随机变量
的分布列如下表,那么
的期望等于()
答 案:5.48
解 析:
=6×0.7+5.4×0.1+5×0.1+4×0.06+0×0.04=5.48
2、椭圆的中心在原点,一个顶点和一个焦点分别是直线x+3y-6与两坐标轴的交点,则此椭圆的标准方程为()
答 案:
解 析:原直线方程可化为
交点(6,0),(0,2). 当点(6,0)是椭圆一个焦点,点(0,2) 是椭圆一个顶点时,c=6,b=2,
当点(0,2) 是椭圆一个焦点,(6,0) 是椭圆一个顶点时,c=2,b-6,