2025年成考高起点《数学(理)》每日一练试题11月18日

2025-11-18 12:12:04 来源:勒克斯教育网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2025年成考高起点《数学(理)》每日一练试题11月18日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、函数的值域是()。

  • A:(0,+∞)
  • B:(-∞,+∞)
  • C:(1,+∞)
  • D:[1,+∞)

答 案:C

解 析:

2、以椭圆上任一点(长轴两端除外)和两个焦点为顶点的三角形的周长等于()。

  • A:
  • B:
  • C:
  • D:

答 案:A

解 析:由椭圆方程 可知a2=9,b2=4,则 则椭圆上任一点(长轴两端除外)和两个焦点为顶点的三角形的周长等于

3、已知两条异面直线m;n,且m在平面α内,n在平面β内,设甲:m//β,n//α;乙:平面α//平面β,则()。

  • A:甲为乙的必要但非充分条件
  • B:甲为乙的充分但非必要条件
  • C:甲非乙的充分也非必要条件
  • D:甲为乙的充分必要条件

答 案:D

解 析:两条异面直线m,n,且m在平面α内,n在平面β内,因为m//β,n//α←→平面α∥平面β,则甲为乙的充分必要条件。答案为D。  

4、下列四个命题中正确的是()。 ①已知a,b,c三条直线,其中a,b异面,a//c,则b,c异面。
②若a与b异面,b与c异面,则a与c异面。
③过平面外一点与平面内一点的直线,和平面内不经过该点的直线是异面直线。
④不同在任何一个平面内的两条直线叫异面直线。

  • A:③④
  • B:②③④
  • C:①②③④
  • D:①②

答 案:A

解 析:①b与c可相交,②a与c可以有平行、相交、异面三种位置关系。答案为A。  

主观题

1、试证明下列各题
(1)
(2)

答 案:(1)化正切为正、余弦,通分即可得证。 (2)

2、某气象预报站天气预报的准确率为80%,计算(1)5次预报中恰有4次准确的概率; (2)5次中至少有次准确的概率.(计算结果保留两个有效数字).  

答 案:  把每次预报看做一次试验,“预报结果准确”看成事件P(A)=0.8,本题就相当于在5次独立重复试验中求A恰好发生4次(或至少4次)的概率,此题属于独立重复试验,由公式来求解。 (1)n=5;p=0.8;k=4 即恰有4次准确的概率为0.41. (2)5次至少有4次准确的概率,就是5次中恰有4次准确的概率与5次预报中都准确的概率的和,即 即至少有4次准确的概率为0.74。  

3、(1)已知tanα=,求cot2α的值; (2)已知tan2α=1,求tanα的值。

答 案:(1)(2)由已知,得 解关于tanα的一元二次方程,得tanα=  

4、已知关于x的二次方程的两根相等,求sinθ+cosθ的值。

答 案:

填空题

1、与已知直线 7x+24y-5 =0 平行,且距离等于3的直线方程是______。  

答 案:7x+24y+70=0或7z+24y-80-0

解 析:

2、y=lg(sinx)的定义域是______。  

答 案:2kπ<x<(2k+1)π(k∈Z)

解 析:sinx>0∴x属于第一、二象限,所以 2kπ<x<(2k+1)π(k∈Z)

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2025成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里