2025年成考高起点《数学(文史)》每日一练试题10月14日

2025-10-14 12:16:36 来源:勒克斯教育网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2025年成考高起点《数学(文史)》每日一练试题10月14日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、若函数y=f(z)在[a,b]上单调,则使得y=f(x+3)必为单调函数的区间是()。

  • A:[a,b+3]
  • B:[a+3,b+3]
  • C:[a-3,b-3]
  • D:[a+3,b]

答 案:C

2、设α=,则()。  

  • A:sinα>0,cosα<0
  • B:sinα>0,cosα>0
  • C:sinα<0,cosα>0
  • D:sinα<0,cosα<0

答 案:A

3、点(2,4)关于直线y=x的对称点的坐标为()  

  • A:(4,2)
  • B:(-2,-4)
  • C:(-2,4)
  • D:(-4,-2)

答 案:A

解 析:点(2,4) 关于直线y=x对称的点为(4,2)

4、6本不同的语文书和4本不同的数学书,任意排放在书架上,则4本数学书放在一起的概率是()。

  • A:
  • B:
  • C:
  • D:

答 案:C

解 析:此题属于等可能事件的概率(即古典概率),6本不同的语文书和4本不同的数学书任意排放在书架上的排列数就为基本事件的总数4本数学书排在一起的排列数为,所以4本数学书放在一起的概率为,故应选C。

主观题

1、已知三角形的三边边长组成公差为1的等差数列,且最大角是最小角的二倍,求三边之长。  

答 案:三角形的三边边长分别为4,5,6。

2、已知log53=a,log54=b,求log2512关于a,b的表达式。  

答 案:

3、

答 案:image.png

解 析:image.png

4、求函数(x∈R)的最大值与最小值。  

答 案:设sinx+cosx=t,则(sinx+cosx)2=t2,1+2sinxcosx=t2,sinxcosx= 于是转化为求的最值。 由所设知 上为增函数,故g(t)的最大值为最小值为

填空题

1、“x2=4”是“x=2”的______。  

答 案:必要不充分条件

2、九个学生期末考试的成绩分别为79 63 88 94 99 77 89 81 85这九个学生成绩的中位数为______。  

答 案:85  

解 析:本题主要考查的知识点为中位数. 将成绩按由小到大排列:63,77,79,81,85,88,89,94,99.因此中位数为85。

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2025成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里