2025-06-28 12:16:49 来源:勒克斯教育网
2025年成考高起点《数学(理)》每日一练试题06月28日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。
单选题
1、方程
的图像是下图中的()




答 案:D
解 析:本题属于读图题型,在寻求答案时,要着重讨论方程的表达式
2、已知全集U=R,A={x|x≥1},B={x|-1
答 案:A
解 析:补集运算应明确知道是否包括端点.A在U中的补集是x<1,


3、抛物线y2=2px上任意一点与焦点连线中点的轨迹方程是()。




答 案:D
4、若f(x)为偶函数,且在(0,+∞)为增函数,则下列不等式成立的是()。




答 案:B
解 析:
主观题
1、设
分别讨论x→0及x→1时f(x)的极限是否存在?
答 案:
∴f(x)在x=0处极限不存在 同理f(x)在x=1处极限存在
2、在正四棱柱ABCD-A'B'C'D'中,
(Ⅰ)写出向量
关于基底{a,b,c}的分解式
(Ⅱ)求证:
(Ⅲ)求证:
答 案:(Ⅰ)由题意知(如图所示)

(Ⅱ)
(Ⅲ)
由已知,a,c是正四棱柱的棱,a,b,c两两垂直
3、记△ABC的内角A,B,C的对边分别为a,b,c,已知B=60°,b2=ac,求A。
答 案:由余弦定理b2=a2+c2-2accosB,可得ac=a2+c2-ac,即a2+c2-2ac=(a-c)2=0,解得a=c。 又因为B=60°,故△ABC为等边三角形,所以A=60°
4、求(1+tan10°)(1+tan35°)的值。
答 案:原式=1+tan10°+tan35°+tan10°·tan35°
填空题
1、lgsinθ=a,lgcosθ=b,则sin2θ=______。
答 案:2×10a+b
解 析:
sin2θ=2sinθcosθ=2×10a×10b=2×10a+b
2、一个问题在1小时内,甲能独立解决的概率是0.5,乙能独立解决的概率是0.4,两人在1小时内解决问题的概率是______。
答 案:0.7
解 析:设事件A为两人在1小时内解决问题,即1小时内至少有一人能解决问题,事件B为甲在1小时内解决问题,事件C为乙在1小时内解决问题,事件B、C是相互独立事件,事件A的对立事件
互为在1小时内两个人都没有解决问题,所以 P(A)=1-P(
)=1-P(
·
)=1-P(
)·P(
)
=1-(1-0.5)×(1-0.4)=1-(0.5×0.6)=1-0.3=0.7