2025年成考高起点《数学(理)》每日一练试题05月21日

2025-05-21 12:18:43 来源:勒克斯教育网

课程 题库
分享到空间 分享到新浪微博 分享到QQ 分享到微信

2025年成考高起点《数学(理)》每日一练试题05月21日,可以帮助我们积累知识点和做题经验,进而提升做题速度。通过成考高起点每日一练的积累,助力我们更容易取得最后的成功。

单选题

1、在△ABC中,AB=4,BC=6,∠ABC=60°,则AC=()。

  • A:128
  • B:76
  • C:
  • D:

答 案:C

解 析:已知两边及夹角用余弦定理得 AC2=62+42-2×6×4cos60°=28 ∴AC=

2、已知α为三角形的一个内角,且sinα+cosα=则α∈()。

  • A:
  • B:
  • C:
  • D:

答 案:C

解 析:由已知得

3、设集合M={1,2,4},N={2,3,5},则集合M∪N=().

  • A:{2}
  • B:{1,2,3,4,5}
  • C:{3,5}
  • D:{1,4}

答 案:B

解 析:M∪N={1,2,4}∪{2,3,5)= {1,2,3,4,5} (答案为B)

4、抛物线y=ax2(a<0)的焦点坐标是()。

  • A:
  • B:
  • C:
  • D:

答 案:C

解 析:

主观题

1、计算 (1)tan5°+ cot5°- 2sec80°
(2)tan15°+cot15
(3)sin15°sin75°

答 案:(1)化切割为弦进行运算。 (2) (3)

2、设函数f(x)=xlnx+x.(I)求曲线y=f(x)在点((1,f(1))处的切线方程;
(II)求f(x)的极值.

答 案:(I)f(1)=1,f'(x)=2+lnx,故f'(1)=2.所以曲线y=f(x)在点(1,f(1))处的切线方程为y=2x-1.(II)令f'(x)=0,解得时,f'(x)时,f'(x)>O.故f(x)在区间单调递减,在区间单调递增.因此f(x)在时取得极小值

3、已知lg2=a,lg3=b,求lg0.15关于a,b的表达式。  

答 案:

4、已知a,b,c成等差数列,a,b,c+1成等比数列.若b=6,求a和c.

答 案:由已知得解得

填空题

1、与已知直线 7x+24y-5 =0 平行,且距离等于3的直线方程是______。  

答 案:7x+24y+70=0或7z+24y-80-0

解 析:

2、的展开式是()

答 案:

解 析:

温馨提示:因考试政策、内容不断变化与调整,本站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
备考交流
2025成考内部交流群
群号:665429327
扫一扫或点击二维码入群
猜你喜欢
换一换
阅读更多内容,狠戳这里